Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 11: 900, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32676088

RESUMO

Class III plant peroxidases (Prxs) are involved in the oxidative polymerization of lignins. Zinnia elegans Jacq. Basic peroxidase (ZePrx) has been previously characterized as capable of catalyzing this reaction in vitro and the role in lignin biosynthesis of several of its Arabidopsis thaliana homologous has been previously confirmed. In the present work, ZePrx was overexpressed in Nicotiana tabacum to further characterize its function in planta with particular attention to its involvement in lignin biosynthesis. Since Prxs are known to alter ROS levels by using them as electron acceptor or producing them in their catalytic activity, the impact of this overexpression in redox homeostasis was studied by analyzing the metabolites and enzymes of the ascorbate-glutathione cycle. In relation to the modification induced by ZePrx overexpression in lignin composition and cellular metabolism, the carbohydrate composition of the cell wall as well as overall gene expression through RNA-Seq were analyzed. The obtained results indicate that the overexpression of ZePrx caused an increase in syringyl lignin in cell wall stems, suggesting that ZePrx is relevant for the oxidation of sinapyl alcohol during lignin biosynthesis, coherently with its S-peroxidase nature. The increase in the glucose content of the cell wall and the reduction of the expression of several genes involved in secondary cell wall biosynthesis suggests the occurrence of a possible compensatory response to maintain cell wall properties. The perturbation of cellular redox homeostasis occurring as a consequence of ZePrx overexpression was kept under control by an increase in APX activity and a reduction in ascorbate redox state. In conclusion, our results confirm the role of ZePrx in lignin biosynthesis and highlight that its activity alters cellular pathways putatively aimed at maintaining redox homeostasis.

2.
Phytochemistry ; 170: 112219, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31794882

RESUMO

The habituation of cultured cells to cellulose biosynthesis inhibitors such as dichlobenil (dichlorobenzonitrile, DCB) has proven a valuable tool to elucidate the mechanisms involved in plant cell wall structural plasticity. Our group has demonstrated that maize cells cope with DCB through a modified cell wall in which cellulose is replaced by a more extensive network of highly cross-linked feruloylated arabinoxylans. In order to gain further insight into the contribution of phenolics to the early remodelling of cellulose-deficient cell walls, a comparative HPLC-PAD analysis was carried out of hydroxycinnamates esterified into nascent and cell wall polysaccharides obtained from non-habituated (NH) and habituated to low DCB concentrations (1.5 µM; H) maize suspension-cultured cells. Incipient DCB-habituated cell walls showed significantly higher levels of esterified ferulic acid and p-coumaric acid throughout the culture cycle. In terms of cell wall fortification, ferulic acid is associated to arabinoxylan crosslinking whereas the increase of p-coumaric suggests an early lignification response. As expected, the level of hydroxycinnamates esterified into nascent polysaccharides was also higher in DCB-habituated cells indicating an overexpression of phenylpropanoid pathway. Due to their key role in cell wall strengthening, special attention was paid into the dimerization pattern of ferulic acid. A quantitative comparison of diferulate dehydrodimers (DFAs) between cell lines and cell compartments revealed that an extra dimerization took place in H cells when both nascent and mature cell wall polysaccharides were analysed. In addition, qualitative differences in the ferulic acid coupling pattern were detected in H cells, allowing us to suggest that 8-O-4'-DFA and 8-5'-DFA featured the ferulic acid dimerization when it occurred in the protoplasmic and cell wall fractions respectively. Both qualitative and quantitative differences in the phenolic profile between NH and H cells point to a regioselectivity in the ferulate dehydrodimerization.


Assuntos
Parede Celular/metabolismo , Celulose/metabolismo , Fenóis/metabolismo , Compostos Fitoquímicos/metabolismo , Zea mays/química , Parede Celular/química , Celulose/química , Fenóis/química , Compostos Fitoquímicos/química , Zea mays/citologia , Zea mays/metabolismo
3.
Physiol Plant ; 164(1): 45-55, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29464727

RESUMO

Maize (Zea mays L.) suspension-cultured cells habituated to a cellulose biosynthesis inhibitor 2,6-dichlorobenzonitrile (DCB) have a modified cell wall, in which the reduction in the cellulose content is compensated by a network of highly cross-linked feruloylated arabinoxylans and the deposition of lignin-like polymers. For both arabinoxylan cross-linking and lignin polymerization, class III peroxidases (POXs) have been demonstrated to have a prominent role. For the first time, a comparative study of POX activity and isoforms in control and cellulose-impaired cells has been addressed, also taking into account their cellular distribution in different compartments. Proteins from the spent medium (SM), soluble cellular (SC), ionically (ICW) and covalently bound cell wall protein fractions were assayed for total and specific peroxidase activity by using coniferyl and sinapyl alcohol and ferulic acid as substrates. The isoPOX profile was obtained by isoelectric focusing. POX activity was higher in DCB-habituated than in non-habituated cells in all protein fractions at all cell culture stages. For all substrates assayed, SC and ICW fractions showed higher activity at the early log growth phase than at the late log phase. However, the highest POX activity in the spent medium was found at the late log phase. According to the isoPOX profiles, the highest diversity of isoPOXs was detected in the ICW and SM protein fractions. The latter fraction contained isoPOXs with higher activity in DCB-habituated cells. Some of the isoPOXs detected could be involved in cross-linking of arabinoxylans and in the lignin-like polymer formation in DCB-habituated cells.


Assuntos
Peroxidases/metabolismo , Zea mays/metabolismo , Celulose/metabolismo , Lignina/metabolismo , Nitrilas/metabolismo
4.
Planta ; 247(4): 987-999, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29330614

RESUMO

MAIN CONCLUSION: Ancymidol inhibits the incorporation of cellulose into cell walls of maize cell cultures in a gibberellin-independent manner, impairing cell growth; the reduction in the cellulose content is compensated with xylans. Ancymidol is a plant growth retardant which impairs gibberellin biosynthesis. It has been reported to inhibit cellulose synthesis by tobacco cells, based on its cell-malforming effects. To ascertain the putative role of ancymidol as a cellulose biosynthesis inhibitor, we conducted a biochemical study of its effect on cell growth and cell wall metabolism in maize cultured cells. Ancymidol concentrations ≤ 500 µM progressively reduced cell growth and induced globular cell shape without affecting cell viability. However, cell growth and viability were strongly reduced by ancymidol concentrations ≥ 1.5 mM. The I50 value for the effect of ancymidol on FW gain was 658 µM. A reversal of the inhibitory effects on cell growth was observed when 500 µM ancymidol-treated cultures were supplemented with 100 µM GA3. Ancymidol impaired the accumulation of cellulose in cell walls, as monitored by FTIR spectroscopy. Cells treated with 500 µM ancymidol showed a ~ 60% reduction in cellulose content, with no further change as the ancymidol concentration increased. Cellulose content was partially restored by 100 µM GA3. Radiolabeling experiments confirmed that ancymidol reduced the incorporation of [14C]glucose into α-cellulose and this reduction was not reverted by the simultaneous application of GA3. RT-PCR analysis indicated that the cellulose biosynthesis inhibition caused by ancymidol is not related to a downregulation of ZmCesA gene expression. Additionally, ancymidol treatment increased the incorporation of [3H]arabinose into a hemicellulose-enriched fraction, and up-regulated ZmIRX9 and ZmIRX10L gene expression, indicating an enhancement in the biosynthesis of arabinoxylans as a compensatory response to cellulose reduction.


Assuntos
Parede Celular/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Pirimidinas/farmacologia , Zea mays/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Celulose/metabolismo , Relação Dose-Resposta a Droga , Giberelinas/farmacologia , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
5.
Carbohydr Polym ; 175: 679-688, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28917917

RESUMO

Second generation bioethanol produced from lignocellulosic biomass is attracting attention as an alternative energy source. In this study, a detailed knowledge of the composition and structure of common cattail (Typha latifolia L.) cell wall polysaccharides, obtained from stem or leaves, has been conducted using a wide set of techniques to evaluate this species as a potential bioethanol feedstock. Our results showed that common cattail cellulose content was high for plants in the order Poales and was accompanied by a small amount of cross-linked polysaccharides. A high degree of arabinose-substitution in xylans, a high syringyl/guaiacyl ratio in lignin and a low level of cell wall crystallinity could yield a good performance for lignocellulose saccharification. These results identify common cattail as a promising plant for use as potential bioethanol feedstock. To the best of our knowledge, this is the first in-depth analysis to be conducted of lignocellulosic material from common cattail.

6.
J Integr Plant Biol ; 59(7): 475-495, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28474461

RESUMO

As a consequence of the habituation to low levels of dichlobenil (DCB), cultured maize cells presented an altered hemicellulose cell fate with a lower proportion of strongly wall-bound hemicelluloses and an increase in soluble extracellular polymers released into the culture medium. The aim of this study was to investigate the relative molecular mass distributions of polysaccharides as well as phenolic metabolism in cells habituated to low levels of DCB (1.5 µM). Generally, cell wall bound hemicelluloses and sloughed polymers from habituated cells were more homogeneously sized and had a lower weight-average relative molecular mass. In addition, polysaccharides underwent massive cross-linking after being secreted into the cell wall, but this cross-linking was less pronounced in habituated cells than in non-habituated ones. However, when relativized, ferulic acid and p-coumaric acid contents were higher in this habituated cell line. Feasibly, cells habituated to low levels of DCB synthesized molecules with a lower weight-average relative molecular mass, although cross-linked, as a part of their strategy to compensate for the lack of cellulose.


Assuntos
Polissacarídeos/metabolismo , Zea mays/metabolismo , Celulose/metabolismo , Ácidos Cumáricos/metabolismo , Nitrilas/farmacologia , Fenóis/metabolismo , Propionatos/metabolismo , Zea mays/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA