Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
mBio ; 15(8): e0003924, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38975756

RESUMO

Symbiotic interactions between humans and our communities of resident gut microbes (microbiota) play many roles in health and disease. Some gut bacteria utilize mucus as a nutrient source and can under certain conditions damage the protective barrier it forms, increasing disease susceptibility. We investigated how Ruminococcus torques-a known mucin degrader that has been implicated in inflammatory bowel diseases (IBDs)-degrades mucin glycoproteins or their component O-linked glycans to understand its effects on the availability of mucin-derived nutrients for other bacteria. We found that R. torques utilizes both mucin glycoproteins and released oligosaccharides from gastric and colonic mucins, degrading these substrates with a panoply of mostly constitutively expressed, secreted enzymes. Investigation of mucin oligosaccharide degradation by R. torques revealed strong α-L-fucosidase, sialidase and ß1,4-galactosidase activities. There was a lack of detectable sulfatase and weak ß1,3-galactosidase degradation, resulting in accumulation of glycans containing these structures on mucin polypeptides. While the Gram-negative symbiont, Bacteroides thetaiotaomicron grows poorly on mucin glycoproteins, we demonstrate a clear ability of R. torques to liberate products from mucins, making them accessible to B. thetaiotaomicron. This work underscores the diversity of mucin-degrading mechanisms in different bacterial species and the probability that some species are contingent on others for the ability to more fully access mucin-derived nutrients. The ability of R. torques to directly degrade a variety of mucin and mucin glycan structures and unlock released glycans for other species suggests that it is a keystone mucin degrader, which might contribute to its association with IBD.IMPORTANCEAn important facet of maintaining healthy symbiosis between host and intestinal microbes is the mucus layer, the first defense protecting the epithelium from lumenal bacteria. Some gut bacteria degrade the various components of intestinal mucins, but detailed mechanisms used by different species are still emerging. It is imperative to understand these mechanisms as they likely dictate interspecies interactions and may illuminate species associated with bacterial mucus damage and subsequent disease susceptibility. Ruminococcus torques is positively associated with IBD in multiple studies. We identified mucin glycan-degrading enzymes in R. torques and found that it shares mucin degradation products with another species of gut bacteria, Bacteroides thetaiotaomicron. Our findings underscore the importance of understanding mucin degradation mechanisms in different gut bacteria and their consequences on interspecies interactions, which may identify keystone bacteria that disproportionately affect mucus damage and could therefore be key players in effects that result from reductions in mucus integrity.


Assuntos
Bacteroides thetaiotaomicron , Microbioma Gastrointestinal , Mucinas , Oligossacarídeos , Ruminococcus , Oligossacarídeos/metabolismo , Mucinas/metabolismo , Bacteroides thetaiotaomicron/metabolismo , Ruminococcus/metabolismo , Humanos , Glicoproteínas/metabolismo , Simbiose
2.
bioRxiv ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38826241

RESUMO

Acarbose is a type-2 diabetes medicine that inhibits dietary starch breakdown into glucose by inhibiting host amylase and glucosidase enzymes. Numerous gut species in the Bacteroides genus enzymatically break down starch and change in relative abundance within the gut microbiome in acarbose-treated individuals. To mechanistically explain this observation, we used two model starch-degrading Bacteroides, Bacteroides ovatus (Bo) and Bacteroides thetaiotaomicron (Bt). Bt growth is severely impaired by acarbose whereas Bo growth is not. The Bacteroides use a starch utilization system (Sus) to grow on starch. We hypothesized that Bo and Bt Sus enzymes are differentially inhibited by acarbose. Instead, we discovered that although acarbose primarily targets the Sus periplasmic GH97 enzymes in both organisms, the drug affects starch processing at multiple other points. Acarbose competes for transport through the Sus beta-barrel proteins and binds to the Sus transcriptional regulators. Further, Bo expresses a non-Sus GH97 (BoGH97D) when grown in starch with acarbose. The Bt homolog, BtGH97H, is not expressed in the same conditions, nor can overexpression of BoGH97D complement the Bt growth inhibition in the presence of acarbose. This work informs us about unexpected complexities of Sus function and regulation in Bacteroides, including variation between related species. Further, this indicates that the gut microbiome may be a source of variable response to acarbose treatment for diabetes.

3.
Mol Syst Biol ; 20(6): 596-625, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38745106

RESUMO

The erosion of the colonic mucus layer by a dietary fiber-deprived gut microbiota results in heightened susceptibility to an attaching and effacing pathogen, Citrobacter rodentium. Nevertheless, the questions of whether and how specific mucolytic bacteria aid in the increased pathogen susceptibility remain unexplored. Here, we leverage a functionally characterized, 14-member synthetic human microbiota in gnotobiotic mice to deduce which bacteria and functions are responsible for the pathogen susceptibility. Using strain dropouts of mucolytic bacteria from the community, we show that Akkermansia muciniphila renders the host more vulnerable to the mucosal pathogen during fiber deprivation. However, the presence of A. muciniphila reduces pathogen load on a fiber-sufficient diet, highlighting the context-dependent beneficial effects of this mucin specialist. The enhanced pathogen susceptibility is not owing to altered host immune or pathogen responses, but is driven by a combination of increased mucus penetrability and altered activities of A. muciniphila and other community members. Our study provides novel insights into the mechanisms of how discrete functional responses of the same mucolytic bacterium either resist or enhance enteric pathogen susceptibility.


Assuntos
Akkermansia , Citrobacter rodentium , Microbioma Gastrointestinal , Animais , Camundongos , Citrobacter rodentium/patogenicidade , Humanos , Suscetibilidade a Doenças , Fibras na Dieta/metabolismo , Vida Livre de Germes , Dieta , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Verrucomicrobia/genética , Infecções por Enterobacteriaceae/microbiologia , Colo/microbiologia , Camundongos Endogâmicos C57BL
4.
ISME Commun ; 4(1): ycae037, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38645272

RESUMO

Structurally complex corn bran arabinoxylan (CAX) was used as a model glycan to investigate gut bacteria growth and competition on different AX-based fine structures. Nine hydrolyzate segments of the CAX polymer varying in chemical structure (sugars and linkages), CAX, five less complex non-corn arabinoxylans, and xylose and glucose were ranked from structurally complex to simple. The substrate panel promoted different overall growth and rates of growth of eight Bacteroides xylan-degrading strains. For example, Bacteroides cellulosilyticus DSM 14838 (Bacteroides cellulosilyticus) grew well on an array of complex and simple structures, while Bacteroides ovatus 3-1-23 grew well only on the simple structures. In a competition experiment, B. cellulosilyticus growth was favored over B. ovatus on the complex AX-based structure. On the other hand, on the simple structure, B. ovatus strongly outcompeted B. cellulosilyticus, which was eliminated from the competitive environment by Day 11. This adaptation to fine structure and resulting competition dynamics indicate that dietary fiber chemical structures, whether complex or simple, favor certain gut bacteria. Overall, this work supports a concept that fiber degraders diversify their competitive abilities to access substrates across the spectrum of heterogeneity of fine structural features of dietary fibers.

5.
Cell Host Microbe ; 32(4): 527-542.e9, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38513656

RESUMO

Inflammatory bowel diseases (IBDs) are chronic conditions characterized by periods of spontaneous intestinal inflammation and are increasing in industrialized populations. Combined with host genetics, diet and gut bacteria are thought to contribute prominently to IBDs, but mechanisms are still emerging. In mice lacking the IBD-associated cytokine, interleukin-10, we show that a fiber-deprived gut microbiota promotes the deterioration of colonic mucus, leading to lethal colitis. Inflammation starts with the expansion of natural killer cells and altered immunoglobulin-A coating of some bacteria. Lethal colitis is then driven by Th1 immune responses to increased activities of mucin-degrading bacteria that cause inflammation first in regions with thinner mucus. A fiber-free exclusive enteral nutrition diet also induces mucus erosion but inhibits inflammation by simultaneously increasing an anti-inflammatory bacterial metabolite, isobutyrate. Our findings underscore the importance of focusing on microbial functions-not taxa-contributing to IBDs and that some diet-mediated functions can oppose those that promote disease.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Microbiota , Camundongos , Animais , Doenças Inflamatórias Intestinais/microbiologia , Colite/microbiologia , Inflamação , Dieta , Predisposição Genética para Doença , Bactérias
6.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293123

RESUMO

Symbiotic interactions between humans and our communities of resident gut microbes (microbiota) play many roles in health and disease. Some gut bacteria utilize mucus as a nutrient source and can under certain conditions damage the protective barrier it forms, increasing disease susceptibility. We investigated how Ruminococcus torques- a known mucin-degrader that remains poorly studied despite its implication in inflammatory bowel diseases (IBDs)- degrades mucin glycoproteins or their component O -linked glycans to understand its effects on the availability of mucin-derived nutrients for other bacteria. We found that R. torques utilizes both mucin glycoproteins and released oligosaccharides from gastric and colonic mucins, degrading these substrates with a panoply of mostly constitutively expressed, secreted enzymes. Investigation of mucin oligosaccharide degradation by R. torques revealed strong fucosidase, sialidase and ß1,4-galactosidase activities. There was a lack of detectable sulfatase and weak ß1,3-galactosidase degradation, resulting in accumulation of glycans containing these structures on mucin polypeptides. While the Gram-negative symbiont, Bacteroides thetaiotaomicron grows poorly on mucin glycoproteins, we demonstrate a clear ability of R. torques to liberate products from mucins, making them accessible to B. thetaiotaomicron . This work underscores the diversity of mucin-degrading mechanisms in different bacterial species and the probability that some species are contingent on others for the ability to more fully access mucin-derived nutrients. The ability of R. torques to directly degrade a variety of mucin and mucin glycan structures and unlock released glycans for other species suggests that it is a keystone mucin degrader, which may contribute to its association with IBD. Importance: An important facet of maintaining healthy symbiosis between host and intestinal microbes is the mucus layer, the first defense protecting the epithelium from lumenal bacteria. Some gut bacteria degrade different components of intestinal mucins, but detailed mechanisms used by different species are still emerging. It is imperative to understand these mechanisms as they likely dictate interspecies interactions and may illuminate particular species associated with bacterial mucus destruction and subsequent disease susceptibility. Ruminococcus torques is positively associated with IBD in multiple studies. We identified mucin glycan-degrading enzymes in R. torques and found that it shares mucin degradation products with another gut bacterium implicated in IBD, Bacteroides thetaiotaomicron . Our findings underscore the importance of understanding the mucin degradation mechanisms of different gut bacteria and their consequences on interspecies interactions, which may identify keystone bacteria that disproportionately contribute to defects in mucus protection and could therefore be targets to prevent or treat IBD.

7.
Cell Host Microbe ; 31(12): 2007-2022.e12, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37967555

RESUMO

Exclusive enteral nutrition (EEN) with fiber-free diets is an effective steroid-sparing treatment to induce clinical remission in children with Crohn's disease (CD). However, the mechanism underlying the beneficial effects of EEN remains obscure. Using a model of microbiota-dependent colitis with the hallmarks of CD, we find that the administration of a fiber-free diet prevents the development of colitis and inhibits intestinal inflammation in colitic animals. Remarkably, fiber-free diet alters the intestinal localization of Mucispirillum schaedleri, a mucus-dwelling pathobiont, which is required for triggering disease. Mechanistically, the absence of dietary fiber reduces nutrient availability and impairs the dissimilatory nitrate reduction to ammonia (DNRA) metabolic pathway of Mucispirillum, leading to its exclusion from the mucus layer and disease remission. Thus, appropriate localization of the specific pathobiont in the mucus layer is critical for disease development, which is disrupted by fiber exclusion. These results suggest strategies to treat CD by targeting the intestinal niche and metabolism of disease-causing microbes.


Assuntos
Colite , Doença de Crohn , Microbiota , Humanos , Criança , Animais , Doença de Crohn/terapia , Dieta , Colite/terapia , Resultado do Tratamento
8.
J Bacteriol ; 205(11): e0021823, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37874167

RESUMO

IMPORTANCE: The human gut microbiota, including Bacteroides, is required for the degradation of otherwise undigestible polysaccharides. The gut microbiota uses polysaccharides as an energy source, and fermentation products such as short-chain fatty acids are beneficial to the human host. This use of polysaccharides is dependent on the proper pairing of a TonB protein with polysaccharide-specific TonB-dependent transporters; however, the formation of these protein complexes is poorly understood. In this study, we examine the role of 11 predicted TonB homologs in polysaccharide uptake. We show that two proteins, TonB4 and TonB6, may be functionally redundant. This may allow for the development of drugs targeting Bacteroides species containing only a TonB4 homolog with limited impact on species encoding the redundant TonB6.


Assuntos
Bacteroides thetaiotaomicron , Humanos , Bacteroides thetaiotaomicron/metabolismo , Polissacarídeos/metabolismo , Bacteroides/genética
9.
Cell Rep ; 42(9): 113071, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37676767

RESUMO

Parkinson's disease (PD) is a neurological disorder characterized by motor dysfunction, dopaminergic neuron loss, and alpha-synuclein (αSyn) inclusions. Many PD risk factors are known, but those affecting disease progression are not. Lifestyle and microbial dysbiosis are candidates in this context. Diet-driven gut dysbiosis and reduced barrier function may increase exposure of enteric neurons to toxins. Here, we study whether fiber deprivation and exposure to bacterial curli, a protein cross-seeding with αSyn, individually or together, exacerbate disease in the enteric and central nervous systems of a transgenic PD mouse model. We analyze the gut microbiome, motor behavior, and gastrointestinal and brain pathologies. We find that diet and bacterial curli alter the microbiome and exacerbate motor performance, as well as intestinal and brain pathologies, but to different extents. Our results shed important insights on how diet and microbiome-borne insults modulate PD progression via the gut-brain axis and have implications for lifestyle management of PD.


Assuntos
Microbioma Gastrointestinal , Microbiota , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/patologia , Microbioma Gastrointestinal/fisiologia , Disbiose , alfa-Sinucleína/metabolismo , Camundongos Transgênicos
10.
Cell Host Microbe ; 31(10): 1639-1654.e10, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37776864

RESUMO

During intestinal inflammation, host nutritional immunity starves microbes of essential micronutrients, such as iron. Pathogens scavenge iron using siderophores, including enterobactin; however, this strategy is counteracted by host protein lipocalin-2, which sequesters iron-laden enterobactin. Although this iron competition occurs in the presence of gut bacteria, the roles of commensals in nutritional immunity involving iron remain unexplored. Here, we report that the gut commensal Bacteroides thetaiotaomicron acquires iron and sustains its resilience in the inflamed gut by utilizing siderophores produced by other bacteria, including Salmonella, via a secreted siderophore-binding lipoprotein XusB. Notably, XusB-bound enterobactin is less accessible to host sequestration by lipocalin-2 but can be "re-acquired" by Salmonella, allowing the pathogen to evade nutritional immunity. Because the host and pathogen have been the focus of studies of nutritional immunity, this work adds commensal iron metabolism as a previously unrecognized mechanism modulating the host-pathogen interactions and nutritional immunity.


Assuntos
Infecções por Salmonella , Sideróforos , Humanos , Lipocalina-2/metabolismo , Sideróforos/metabolismo , Enterobactina/metabolismo , Bactérias/metabolismo , Ferro/metabolismo
11.
bioRxiv ; 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37461508

RESUMO

The human gut microbiota is able to degrade otherwise undigestible polysaccharides, largely through the activity of the Bacteroides. Uptake of polysaccharides into Bacteroides is controlled by TonB-dependent transporters (TBDT) whose transport is energized by an inner membrane complex composed of the proteins TonB, ExbB, and ExbD. Bacteroides thetaiotaomicron (B. theta) encodes 11 TonB homologs which are predicted to be able to contact TBDTs to facilitate transport. However, it is not clear which TonBs are important for polysaccharide uptake. Using strains in which each of the 11 predicted tonB genes are deleted, we show that TonB4 (BT2059) is important but not essential for proper growth on starch. In the absence of TonB4, we observed an increase in abundance of TonB6 (BT2762) in the membrane of B. theta, suggesting functional redundancy of these TonB proteins. Growth of the single deletion strains on pectin galactan, chondroitin sulfate, arabinan, and levan suggests a similar functional redundancy of the TonB proteins. A search for highly homologous proteins across other Bacteroides species and recent work in B. fragilis suggests that TonB4 is widely conserved and may play a common role in polysaccharide uptake. However, proteins similar to TonB6 are found only in B. theta and closely related species suggesting that the functional redundancy of TonB4 and TonB6 may be limited across the Bacteroides. This study extends our understanding of the protein network required for polysaccharide utilization in B. theta and highlights differences in TonB complexes across Bacteroides species.

12.
bioRxiv ; 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37425782

RESUMO

During intestinal inflammation, host nutritional immunity starves microbes of essential micronutrients such as iron. Pathogens scavenge iron using siderophores, which is counteracted by the host using lipocalin-2, a protein that sequesters iron-laden siderophores, including enterobactin. Although the host and pathogens compete for iron in the presence of gut commensal bacteria, the roles of commensals in nutritional immunity involving iron remain unexplored. Here, we report that the gut commensal Bacteroides thetaiotaomicron acquires iron in the inflamed gut by utilizing siderophores produced by other bacteria including Salmonella, via a secreted siderophore-binding lipoprotein termed XusB. Notably, XusB-bound siderophores are less accessible to host sequestration by lipocalin-2 but can be "re-acquired" by Salmonella , allowing the pathogen to evade nutritional immunity. As the host and pathogen have been the focus of studies of nutritional immunity, this work adds commensal iron metabolism as a previously unrecognized mechanism modulating the interactions between pathogen and host nutritional immunity.

13.
J Immunol ; 211(5): 767-781, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486212

RESUMO

The gut microbiome and intestinal immune system are engaged in a dynamic interplay that provides myriad benefits to host health. However, the microbiome can also elicit damaging inflammatory responses, and thus establishing harmonious immune-microbiome interactions is essential to maintain homeostasis. Gut microbes actively coordinate the induction of anti-inflammatory responses that establish these mutualistic interactions. Despite this, the microbial pathways that govern this dialogue remain poorly understood. We investigated the mechanisms through which the gut symbiont Bacteroides thetaiotaomicron exerts its immunomodulatory functions on murine- and human-derived cells. Our data reveal that B. thetaiotaomicron stimulates production of the cytokine IL-10 via secreted factors that are packaged into outer membrane vesicles, in a TLR2- and MyD88-dependent manner. Using a transposon mutagenesis-based screen, we identified a key role for the B. thetaiotaomicron-encoded NADH:ubiquinone oxidoreductase (NQR) complex, which regenerates NAD+ during respiration, in this process. Finally, we found that disruption of NQR reduces the capacity of B. thetaiotaomicron to induce IL-10 by impairing biogenesis of outer membrane vesicles. These data identify a microbial pathway with a previously unappreciated role in gut microbe-mediated immunomodulation that may be targeted to manipulate the capacity of the microbiome to shape host immunity.


Assuntos
Bacteroides thetaiotaomicron , Camundongos , Humanos , Animais , Interleucina-10/metabolismo , Mutagênese , Trato Gastrointestinal , Citocinas/metabolismo
14.
Res Sq ; 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36993463

RESUMO

Inflammatory bowel disease (IBD) is a chronic condition characterized by periods of spontaneous intestinal inflammation and is increasing in industrialized populations. Combined with host genetic predisposition, diet and gut bacteria are thought to be prominent features contributing to IBD, but little is known about the precise mechanisms involved. Here, we show that low dietary fiber promotes bacterial erosion of protective colonic mucus, leading to lethal colitis in mice lacking the IBD-associated cytokine, interleukin-10. Diet-induced inflammation is driven by mucin-degrading bacteria-mediated Th1 immune responses and is preceded by expansion of natural killer T cells and reduced immunoglobulin A coating of some bacteria. Surprisingly, an exclusive enteral nutrition diet, also lacking dietary fiber, reduced disease by increasing bacterial production of isobutyrate, which is dependent on the presence of a specific bacterial species, Eubacterium rectale. Our results illuminate a mechanistic framework using gnotobiotic mice to unravel the complex web of diet, host and microbial factors that influence IBD.

15.
Res Sq ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36778495

RESUMO

Acute gastrointestinal intestinal GVHD (aGI-GVHD) is a serious complication of allogeneic hematopoietic stem cell transplantation, and the intestinal microbiota is known to impact on its severity. However, an association between treatment response of aGI-GVHD and the intestinal microbiota has not been well-studied. In a cohort of patients with aGI-GVHD (n=37), we found that non-response to standard therapy with corticosteroids was associated with prior treatment with carbapenem antibiotics and loss of Bacteroides ovatus from the microbiome. In a mouse model of carbapenem-aggravated GVHD, introducing Bacteroides ovatus reduced severity of GVHD and improved survival. Bacteroides ovatus reduced degradation of colonic mucus by another intestinal commensal, Bacteroides thetaiotaomicron, via its ability to metabolize dietary polysaccharides into monosaccharides, which then inhibit mucus degradation by Bacteroides thetaiotaomicron and reduce GVHD-related mortality.

16.
bioRxiv ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38168188

RESUMO

The erosion of the colonic mucus layer by a dietary fiber-deprived gut microbiota results in heightened susceptibility to an attaching and effacing pathogen, Citrobacter rodentium. Nevertheless, the questions of whether and how specific mucolytic bacteria aid in the increased pathogen susceptibility remain unexplored. Here, we leverage a functionally characterized, 14-member synthetic human microbiota in gnotobiotic mice to deduce which bacteria and functions are responsible for the pathogen susceptibility. Using strain dropouts of mucolytic bacteria from the community, we show that Akkermansia muciniphila renders the host more vulnerable to the mucosal pathogen during fiber deprivation. However, the presence of A. muciniphila reduces pathogen load on a fiber-sufficient diet, highlighting the context-dependent beneficial effects of this mucin specialist. The enhanced pathogen susceptibility is not owing to altered host immune or pathogen responses, but is driven by a combination of increased mucus penetrability and altered activities of A. muciniphila and other community members. Our study provides novel insights into the mechanisms of how discrete functional responses of the same mucolytic bacterium either resist or enhance enteric pathogen susceptibility.

17.
Cell ; 185(20): 3705-3719.e14, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36179667

RESUMO

The intestinal microbiota is an important modulator of graft-versus-host disease (GVHD), which often complicates allogeneic hematopoietic stem cell transplantation (allo-HSCT). Broad-spectrum antibiotics such as carbapenems increase the risk for intestinal GVHD, but mechanisms are not well understood. In this study, we found that treatment with meropenem, a commonly used carbapenem, aggravates colonic GVHD in mice via the expansion of Bacteroides thetaiotaomicron (BT). BT has a broad ability to degrade dietary polysaccharides and host mucin glycans. BT in meropenem-treated allogeneic mice demonstrated upregulated expression of enzymes involved in the degradation of mucin glycans. These mice also had thinning of the colonic mucus layer and decreased levels of xylose in colonic luminal contents. Interestingly, oral xylose supplementation significantly prevented thinning of the colonic mucus layer in meropenem-treated mice. Specific nutritional supplementation strategies, including xylose supplementation, may combat antibiotic-mediated microbiome injury to reduce the risk for intestinal GVHD in allo-HSCT patients.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteroides , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/etiologia , Meropeném , Camundongos , Mucinas/metabolismo , Muco/metabolismo , Polissacarídeos/metabolismo , Xilose
19.
Nat Chem Biol ; 18(8): 841-849, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35710619

RESUMO

Sulfated glycans are ubiquitous nutrient sources for microbial communities that have coevolved with eukaryotic hosts. Bacteria metabolize sulfated glycans by deploying carbohydrate sulfatases that remove sulfate esters. Despite the biological importance of sulfatases, the mechanisms underlying their ability to recognize their glycan substrate remain poorly understood. Here, we use structural biology to determine how sulfatases from the human gut microbiota recognize sulfated glycans. We reveal seven new carbohydrate sulfatase structures spanning four S1 sulfatase subfamilies. Structures of S1_16 and S1_46 represent novel structures of these subfamilies. Structures of S1_11 and S1_15 demonstrate how non-conserved regions of the protein drive specificity toward related but distinct glycan targets. Collectively, these data reveal that carbohydrate sulfatases are highly selective for the glycan component of their substrate. These data provide new approaches for probing sulfated glycan metabolism while revealing the roles carbohydrate sulfatases play in host glycan catabolism.


Assuntos
Microbioma Gastrointestinal , Sulfatases , Bactérias/metabolismo , Humanos , Polissacarídeos/química , Sulfatases/química , Sulfatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA