Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(12): e22991, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125417

RESUMO

Assays to quantify natural killer (NK) cell killing efficacy have traditionally focused on assessing either direct killing or antibody dependent cell-mediated cytotoxicity (ADCC) independently. Due to the probability that immunotherapeutic interventions affect NK cell-mediated direct killing and NK cell-mediated ADCC differently, we developed an assay with the capacity to measure NK cell-mediated direct killing and ADCC simultaneously with cells from the same human donor. Specifically, this design allows for a single NK cell population to be split into several experimental conditions (e.g., direct killing, ADCC), thus controlling for potential confounders associated with human-to-human variation when assessing immunotherapy impacts. Our Natural Killer cell Simultaneous ADCC and Direct Killing Assay (NK-SADKA) allows researchers to reproducibly quantify both direct killing and ADCC by human NK cells. Furthermore, this optimized experimental design allows for concurrent analysis of the NK cells via flow cytometric immunophenotyping of NK cell populations which will facilitate the identification of relationships between NK cell phenotype and the subsequent killing potential. This assay will be valuable for assessing the broader impact(s) of immunotherapy strategies on both modes of NK cell killing.

2.
Arthritis Rheumatol ; 75(7): 1216-1228, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36704840

RESUMO

OBJECTIVE: Photosensitivity is one of the most common manifestations of systemic lupus erythematosus (SLE), yet its pathogenesis is not well understood. The normal-appearing epidermis of patients with SLE exhibits increased ultraviolet B (UVB)-driven cell death that persists in cell culture. Here, we investigated the role of epigenetic modification and Hippo signaling in enhanced UVB-induced apoptosis seen in SLE keratinocytes. METHODS: We analyzed DNA methylation in cultured keratinocytes from SLE patients compared to keratinocytes from healthy controls (n = 6/group). Protein expression was validated in cultured keratinocytes using immunoblotting and immunofluorescence. An immortalized keratinocyte line overexpressing WWC1 was generated via lentiviral vector. WWC1-driven changes were inhibited using a large tumor suppressor kinase 1/2 (LATS1/2) inhibitor (TRULI) and small interfering RNA (siRNA). The interaction between the Yes-associated protein (YAP) and the transcriptional enhancer associate domain (TEAD) was inhibited by overexpression of an N/TERT cell line expressing a tetracycline-inducible green fluorescent protein-tagged protein that inhibits YAP-TEAD binding (TEADi). Apoptosis was assessed using cleaved caspase 3/7 and TUNEL staining. RESULTS: Hippo signaling was the top differentially methylated pathway in SLE versus control keratinocytes. SLE keratinocytes (n = 6) showed significant hypomethylation (Δß = -0.153) and thus overexpression of the Hippo regulator WWC1 (P = 0.002). WWC1 overexpression increased LATS1/2 kinase activation, leading to YAP cytoplasmic retention and altered proapoptotic transcription in SLE keratinocytes. Accordingly, UVB-mediated apoptosis in keratinocytes could be enhanced by WWC1 overexpression or YAP-TEAD inhibition, mimicking SLE keratinocytes. Importantly, inhibition of LATS1/2 with either the chemical inhibitor TRULI or siRNA effectively eliminated enhanced UVB-apoptosis in SLE keratinocytes. CONCLUSION: Our work unravels a novel driver of photosensitivity in SLE: overactive Hippo signaling in SLE keratinocytes restricts YAP transcriptional activity, leading to shifts that promote UVB apoptosis.


Assuntos
Via de Sinalização Hippo , Lúpus Eritematoso Sistêmico , Humanos , Queratinócitos/metabolismo , Lúpus Eritematoso Sistêmico/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
3.
J Autoimmun ; 132: 102865, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35858957

RESUMO

Cutaneous lupus erythematosus (CLE) is an inflammatory and autoimmune skin condition that affects patients with systemic lupus erythematosus (SLE) and exists as an isolated entity without associated SLE. Flares of CLE, often triggered by exposure to ultraviolet (UV) light result in lost productivity and poor quality of life for patients and can be associated with trigger of systemic inflammation. In the past 10 years, the knowledge of CLE etiopathogenesis has grown, leading to promising targets for better therapies. Development of lesions likely begins in a pro-inflammatory epidermis, conditioned by excess type I interferon (IFN) production to undergo increased cell death and inflammatory cytokine production after UV light exposure. The reasons for this inflammatory predisposition are not well-understood, but may be an early event, as ANA + patients without criteria for autoimmune disease exhibit similar (although less robust) findings. Non-lesional skin of SLE patients also exhibits increased innate immune cell infiltration, conditioned by excess IFNs to release pro-inflammatory cytokines, and potentially increase activation of the adaptive immune system. Plasmacytoid dendritic cells are also found in non-lesional skin and may contribute to type I IFN production, although this finding is now being questioned by new data. Once the inflammatory cycle begins, lesional infiltration by numerous other cell populations ensues, including IFN-educated T cells. The heterogeneity amongst lesional CLE subtypes isn't fully understood, but B cells appear to discriminate discoid lupus erythematosus from other subtypes. Continued discovery will provide novel targets for additional therapeutic pursuits. This review will comprehensively discuss the contributions of tissue-specific and immune cell populations to the initiation and propagation of disease.


Assuntos
Lúpus Eritematoso Cutâneo , Lúpus Eritematoso Discoide , Lúpus Eritematoso Sistêmico , Humanos , Qualidade de Vida , Lúpus Eritematoso Cutâneo/diagnóstico , Lúpus Eritematoso Cutâneo/metabolismo , Pele/patologia
4.
J Expo Sci Environ Epidemiol ; 32(5): 706-711, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34408261

RESUMO

BACKGROUND: Aerosol transmission of COVID-19 is the subject of ongoing policy debate. Characterizing aerosol produced by people with COVID-19 is critical to understanding the role of aerosols in transmission. OBJECTIVE: We investigated the presence of virus in size-fractioned aerosols from six COVID-19 patients admitted into mixed acuity wards in April of 2020. METHODS: Size-fractionated aerosol samples and aerosol size distributions were collected from COVID-19 positive patients. Aerosol samples were analyzed for viral RNA, positive samples were cultured in Vero E6 cells. Serial RT-PCR of cells indicated samples where viral replication was likely occurring. Viral presence was also investigated by western blot and transmission electron microscopy (TEM). RESULTS: SARS-CoV-2 RNA was detected by rRT-PCR in all samples. Three samples confidently indicated the presence of viral replication, all of which were from collected sub-micron aerosol. Western blot indicated the presence of viral proteins in all but one of these samples, and intact virions were observed by TEM in one sample. SIGNIFICANCE: Observations of viral replication in the culture of submicron aerosol samples provides additional evidence that airborne transmission of COVID-19 is possible. These results support the use of efficient respiratory protection in both healthcare and by the public to limit transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , RNA Viral/análise , Aerossóis e Gotículas Respiratórios , Proteínas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA