Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 4(2): 432-440, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38425897

RESUMO

Peptide-based covalent inhibitors targeted to nucleophilic protein residues have recently emerged as new modalities to target protein-protein interactions (PPIs) as they may provide some benefits over more classic competitive inhibitors. Covalent inhibitors are generally targeted to cysteine, the most intrinsically reactive amino acid residue, and to lysine, which is more abundant at the surface of proteins but much less frequently to histidine. Herein, we report the structure-guided design of targeted covalent inhibitors (TCIs) able to bind covalently and selectively to the bacterial sliding clamp (SC), by reacting with a well-conserved histidine residue located on the edge of the peptide-binding pocket. SC is an essential component of the bacterial DNA replication machinery, identified as a promising target for the development of new antibacterial compounds. Thermodynamic and kinetic analyses of ligands bearing different mild electrophilic warheads confirmed the higher efficiency of the chloroacetamide compared to Michael acceptors. Two high-resolution X-ray structures of covalent inhibitor-SC adducts were obtained, revealing the canonical orientation of the ligand and details of covalent bond formation with histidine. Proteomic studies were consistent with a selective SC engagement by the chloroacetamide-based TCI. Finally, the TCI of SC was substantially more active than the parent noncovalent inhibitor in an in vitro SC-dependent DNA synthesis assay, validating the potential of the approach to design covalent inhibitors of protein-protein interactions targeted to histidine.

2.
IUCrJ ; 10(Pt 6): 678-693, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37727961

RESUMO

Fixed targets are a popular form of sample-delivery system used in serial crystallography at synchrotron and X-ray free-electron laser sources. They offer a wide range of sample-preparation options and are generally easy to use. The supports are typically made from silicon, quartz or polymer. Of these, currently, only silicon offers the ability to perform an aperture-aligned data collection where crystals are loaded into cavities in precise locations and sequentially rastered through, in step with the X-ray pulses. The polymer-based fixed targets have lacked the precision fabrication to enable this data-collection strategy and have been limited to directed-raster scans with crystals randomly distributed across the polymer surface. Here, the fabrication and first results from a new polymer-based fixed target, the micro-structured polymer fixed targets (MISP chips), are presented. MISP chips, like those made from silicon, have a precise array of cavities and fiducial markers. They consist of a structured polymer membrane and a stabilization frame. Crystals can be loaded into the cavities and the excess crystallization solution removed through apertures at their base. The fiducial markers allow for a rapid calculation of the aperture locations. The chips have a low X-ray background and, since they are optically transparent, also allow for an a priori analysis of crystal locations. This location mapping could, ultimately, optimize hit rates towards 100%. A black version of the MISP chip was produced to reduce light contamination for optical-pump/X-ray probe experiments. A study of the loading properties of the chips reveals that these types of fixed targets are best optimized for crystals of the order of 25 µm, but quality data can be collected from crystals as small as 5 µm. With the development of these chips, it has been proved that polymer-based fixed targets can be made with the precision required for aperture-alignment-based data-collection strategies. Further work can now be directed towards more cost-effective mass fabrication to make their use more sustainable for serial crystallography facilities and users.

3.
Nature ; 615(7954): 939-944, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36949205

RESUMO

Vision is initiated by the rhodopsin family of light-sensitive G protein-coupled receptors (GPCRs)1. A photon is absorbed by the 11-cis retinal chromophore of rhodopsin, which isomerizes within 200 femtoseconds to the all-trans conformation2, thereby initiating the cellular signal transduction processes that ultimately lead to vision. However, the intramolecular mechanism by which the photoactivated retinal induces the activation events inside rhodopsin remains experimentally unclear. Here we use ultrafast time-resolved crystallography at room temperature3 to determine how an isomerized twisted all-trans retinal stores the photon energy that is required to initiate the protein conformational changes associated with the formation of the G protein-binding signalling state. The distorted retinal at a 1-ps time delay after photoactivation has pulled away from half of its numerous interactions with its binding pocket, and the excess of the photon energy is released through an anisotropic protein breathing motion in the direction of the extracellular space. Notably, the very early structural motions in the protein side chains of rhodopsin appear in regions that are involved in later stages of the conserved class A GPCR activation mechanism. Our study sheds light on the earliest stages of vision in vertebrates and points to fundamental aspects of the molecular mechanisms of agonist-mediated GPCR activation.


Assuntos
Rodopsina , Visão Ocular , Animais , Sítios de Ligação/efeitos da radiação , Cristalografia , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Isomerismo , Fótons , Ligação Proteica/efeitos da radiação , Conformação Proteica/efeitos da radiação , Retinaldeído/química , Retinaldeído/metabolismo , Retinaldeído/efeitos da radiação , Rodopsina/química , Rodopsina/metabolismo , Rodopsina/efeitos da radiação , Fatores de Tempo , Visão Ocular/fisiologia , Visão Ocular/efeitos da radiação
4.
Science ; 375(6583): 845-851, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35113649

RESUMO

Chloride transport by microbial rhodopsins is an essential process for which molecular details such as the mechanisms that convert light energy to drive ion pumping and ensure the unidirectionality of the transport have remained elusive. We combined time-resolved serial crystallography with time-resolved spectroscopy and multiscale simulations to elucidate the molecular mechanism of a chloride-pumping rhodopsin and the structural dynamics throughout the transport cycle. We traced transient anion-binding sites, obtained evidence for how light energy is used in the pumping mechanism, and identified steric and electrostatic molecular gates ensuring unidirectional transport. An interaction with the π-electron system of the retinal supports transient chloride ion binding across a major bottleneck in the transport pathway. These results allow us to propose key mechanistic features enabling finely controlled chloride transport across the cell membrane in this light-powered chloride ion pump.

5.
J Med Chem ; 64(23): 17063-17078, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34806883

RESUMO

The bacterial DNA sliding clamp (SC), or replication processivity factor, is a promising target for the development of novel antibiotics. We report a structure-activity relationship study of a new series of peptides interacting within the Escherichia coli SC (EcSC) binding pocket. Various modifications were explored including N-alkylation of the peptide bonds, extension of the N-terminal moiety, and introduction of hydrophobic and constrained residues at the C-terminus. In each category, single modifications were identified that increased affinity to EcSC. A combination of such modifications yielded in several cases to a substantially increased affinity compared to the parent peptides with Kd in the range of 30-80 nM. X-ray structure analysis of 11 peptide/EcSC co-crystals revealed new interactions at the peptide-protein interface (i.e., stacking interactions, hydrogen bonds, and hydrophobic contacts) that can account for the improved binding. Several compounds among the best binders were also found to be more effective in inhibiting SC-dependent DNA synthesis.


Assuntos
Escherichia coli/química , Peptídeos/química , Cristalização , Cristalografia por Raios X , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Conformação Proteica , Relação Estrutura-Atividade , Termodinâmica
6.
IUCrJ ; 8(Pt 6): 905-920, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34804544

RESUMO

Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables essentially radiation-damage-free macromolecular structure determination using microcrystals that are too small for synchrotron studies. However, SFX experiments often require large amounts of sample in order to collect highly redundant data where some of the many stochastic errors can be averaged out to determine accurate structure-factor amplitudes. In this work, the capability of the Swiss X-ray free-electron laser (SwissFEL) was used to generate large-bandwidth X-ray pulses [Δλ/λ = 2.2% full width at half-maximum (FWHM)], which were applied in SFX with the aim of improving the partiality of Bragg spots and thus decreasing sample consumption while maintaining the data quality. Sensitive data-quality indicators such as anomalous signal from native thaumatin micro-crystals and de novo phasing results were used to quantify the benefits of using pink X-ray pulses to obtain accurate structure-factor amplitudes. Compared with data measured using the same setup but using X-ray pulses with typical quasi-monochromatic XFEL bandwidth (Δλ/λ = 0.17% FWHM), up to fourfold reduction in the number of indexed diffraction patterns required to obtain similar data quality was achieved. This novel approach, pink-beam SFX, facilitates the yet underutilized de novo structure determination of challenging proteins at XFELs, thereby opening the door to more scientific breakthroughs.

7.
Acta Crystallogr D Struct Biol ; 77(Pt 9): 1153-1167, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473086

RESUMO

Serial data collection has emerged as a major tool for data collection at state-of-the-art light sources, such as microfocus beamlines at synchrotrons and X-ray free-electron lasers. Challenging targets, characterized by small crystal sizes, weak diffraction and stringent dose limits, benefit most from these methods. Here, the use of a thin support made of a polymer-based membrane for performing serial data collection or screening experiments is demonstrated. It is shown that these supports are suitable for a wide range of protein crystals suspended in liquids. The supports have also proved to be applicable to challenging cases such as membrane proteins growing in the sponge phase. The sample-deposition method is simple and robust, as well as flexible and adaptable to a variety of cases. It results in an optimally thin specimen providing low background while maintaining minute amounts of mother liquor around the crystals. The 2 × 2 mm area enables the deposition of up to several microlitres of liquid. Imaging and visualization of the crystals are straightforward on the highly transparent membrane. Thanks to their affordable fabrication, these supports have the potential to become an attractive option for serial experiments at synchrotrons and free-electron lasers.


Assuntos
Cristalografia por Raios X/métodos , Substâncias Macromoleculares/química , Proteínas/química , Coleta de Dados
8.
IUCrJ ; 7(Pt 6): 965-975, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33209311

RESUMO

Long-wavelength pulses from the Swiss X-ray free-electron laser (XFEL) have been used for de novo protein structure determination by native single-wavelength anomalous diffraction (native-SAD) phasing of serial femtosecond crystallography (SFX) data. In this work, sensitive anomalous data-quality indicators and model proteins were used to quantify improvements in native-SAD at XFELs such as utilization of longer wavelengths, careful experimental geometry optimization, and better post-refinement and partiality correction. Compared with studies using shorter wavelengths at other XFELs and older software versions, up to one order of magnitude reduction in the required number of indexed images for native-SAD was achieved, hence lowering sample consumption and beam-time requirements significantly. Improved data quality and higher anomalous signal facilitate so-far underutilized de novo structure determination of challenging proteins at XFELs. Improvements presented in this work can be used in other types of SFX experiments that require accurate measurements of weak signals, for example time-resolved studies.

9.
IUCrJ ; 7(Pt 6): 1131-1141, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33209324

RESUMO

Serial protein crystallography has emerged as a powerful method of data collection on small crystals from challenging targets, such as membrane proteins. Multiple microcrystals need to be located on large and often flat mounts while exposing them to an X-ray dose that is as low as possible. A crystal-prelocation method is demonstrated here using low-dose 2D full-field propagation-based X-ray phase-contrast imaging at the X-ray imaging beamline TOMCAT at the Swiss Light Source (SLS). This imaging step provides microcrystal coordinates for automated serial data collection at a microfocus macromolecular crystallography beamline on samples with an essentially flat geometry. This prelocation method was applied to microcrystals of a soluble protein and a membrane protein, grown in a commonly used double-sandwich in situ crystallization plate. The inner sandwiches of thin plastic film enclosing the microcrystals in lipid cubic phase were flash cooled and imaged at TOMCAT. Based on the obtained crystal coordinates, both still and rotation wedge serial data were collected automatically at the SLS PXI beamline, yielding in both cases a high indexing rate. This workflow can be easily implemented at many synchrotron facilities using existing equipment, or potentially integrated as an online technique in the next-generation macromolecular crystallography beamline, and thus benefit a number of dose-sensitive challenging protein targets.

10.
Nature ; 583(7815): 314-318, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32499654

RESUMO

Light-driven sodium pumps actively transport small cations across cellular membranes1. These pumps are used by microorganisms to convert light into membrane potential and have become useful optogenetic tools with applications in neuroscience. Although the resting state structures of the prototypical sodium pump Krokinobacter eikastus rhodopsin 2 (KR2) have been solved2,3, it is unclear how structural alterations over time allow sodium to be translocated against a concentration gradient. Here, using the Swiss X-ray Free Electron Laser4, we have collected serial crystallographic data at ten pump-probe delays from femtoseconds to milliseconds. High-resolution structural snapshots throughout the KR2 photocycle show how retinal isomerization is completed on the femtosecond timescale and changes the local structure of the binding pocket in the early nanoseconds. Subsequent rearrangements and deprotonation of the retinal Schiff base open an electrostatic gate in microseconds. Structural and spectroscopic data, in combination with quantum chemical calculations, indicate that a sodium ion binds transiently close to the retinal within one millisecond. In the last structural intermediate, at 20 milliseconds after activation, we identified a potential second sodium-binding site close to the extracellular exit. These results provide direct molecular insight into the dynamics of active cation transport across biological membranes.


Assuntos
Flavobacteriaceae/química , Rodopsinas Microbianas/química , Rodopsinas Microbianas/efeitos da radiação , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/efeitos da radiação , Sítios de Ligação , Cristalografia , Elétrons , Transporte de Íons , Isomerismo , Lasers , Prótons , Teoria Quântica , Retinaldeído/química , Retinaldeído/metabolismo , Bases de Schiff/química , Sódio/metabolismo , Análise Espectral , Eletricidade Estática , Fatores de Tempo
11.
J Synchrotron Radiat ; 27(Pt 3): 860-863, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32381791

RESUMO

In this paper, the design and functionalities of the high-throughput TELL sample exchange system for macromolecular crystallography is presented. TELL was developed at the Paul Scherrer Institute with a focus on speed, storage capacity and reliability to serve the three macromolecular crystallography beamlines of the Swiss Light Source, as well as the SwissMX instrument at SwissFEL.


Assuntos
Cristalografia por Raios X/instrumentação , Substâncias Macromoleculares/química , Desenho de Equipamento , Reprodutibilidade dos Testes , Robótica/instrumentação , Síncrotrons/instrumentação
12.
J Synchrotron Radiat ; 27(Pt 2): 329-339, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32153271

RESUMO

Detection of heavy elements, such as metals, in macromolecular crystallography (MX) samples by X-ray fluorescence is a function traditionally covered at synchrotron MX beamlines by silicon drift detectors, which cannot be used at X-ray free-electron lasers because of the very short duration of the X-ray pulses. Here it is shown that the hybrid pixel charge-integrating detector JUNGFRAU can fulfill this function when operating in a low-flux regime. The feasibility of precise position determination of micrometre-sized metal marks is also demonstrated, to be used as fiducials for offline prelocation in serial crystallography experiments, based on the specific fluorescence signal measured with JUNGFRAU, both at the synchrotron and at SwissFEL. Finally, the measurement of elemental absorption edges at a synchrotron beamline using JUNGFRAU is also demonstrated.

13.
ACS Infect Dis ; 5(6): 1022-1034, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-30912430

RESUMO

Bacterial sliding clamps control the access of DNA polymerases to the replication fork and are appealing targets for antibacterial drug development. It is therefore essential to decipher the polymerase-clamp binding mode across various bacterial species. Here, two residues of the E. coli clamp binding pocket, EcS346 and EcM362, and their cognate residues in M. tuberculosis and B. subtilis clamps, were mutated. The effects of these mutations on the interaction of a model peptide with these variant clamps were evaluated by thermodynamic, molecular dynamics, X-rays crystallography, and biochemical analyses. EcM362 and corresponding residues in Gram positive clamps occupy a strategic position where a mobile residue is essential for an efficient peptide interaction. EcS346 has a more subtle function that modulates the pocket folding dynamics, while the equivalent residue in B. subtilis is essential for polymerase activity and might therefore be a Gram positive-specific molecular marker. Finally, the peptide binds through an induced-fit process to Gram negative and positive pockets, but the complex stability varies according to a pocket-specific network of interactions.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Peptídeos/farmacologia , Cristalografia por Raios X , DNA Polimerase Dirigida por DNA/metabolismo , Desenvolvimento de Medicamentos , Escherichia coli/genética , Bactérias Gram-Positivas/genética , Ligantes , Modelos Moleculares , Mutação , Inibidores da Síntese de Ácido Nucleico , Peptídeos/química , Ligação Proteica , Conformação Proteica
14.
Acta Crystallogr D Struct Biol ; 75(Pt 2): 160-177, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30821705

RESUMO

Highly efficient data-collection methods are required for successful macromolecular crystallography (MX) experiments at X-ray free-electron lasers (XFELs). XFEL beamtime is scarce, and the high peak brightness of each XFEL pulse destroys the exposed crystal volume. It is therefore necessary to combine diffraction images from a large number of crystals (hundreds to hundreds of thousands) to obtain a final data set, bringing about sample-refreshment challenges that have previously been unknown to the MX synchrotron community. In view of this experimental complexity, a number of sample delivery methods have emerged, each with specific requirements, drawbacks and advantages. To provide useful selection criteria for future experiments, this review summarizes the currently available sample delivery methods, emphasising the basic principles and the specific sample requirements. Two main approaches to sample delivery are first covered: (i) injector methods with liquid or viscous media and (ii) fixed-target methods using large crystals or using microcrystals inside multi-crystal holders or chips. Additionally, hybrid methods such as acoustic droplet ejection and crystal extraction are covered, which combine the advantages of both fixed-target and injector approaches.


Assuntos
Cristalografia por Raios X/instrumentação , Lasers , Acústica/instrumentação , Animais , Cristalização/economia , Cristalização/instrumentação , Cristalografia por Raios X/economia , Elétrons , Desenho de Equipamento , Análise de Injeção de Fluxo/economia , Análise de Injeção de Fluxo/instrumentação , Humanos , Proteínas/química , Fatores de Tempo
15.
Nat Commun ; 9(1): 544, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29416037

RESUMO

In meso crystallization of membrane proteins from lipidic mesophases is central to protein structural biology but limited to membrane proteins with small extracellular domains (ECDs), comparable to the water channels (3-5 nm) of the mesophase. Here we present a strategy expanding the scope of in meso crystallization to membrane proteins with very large ECDs. We combine monoacylglycerols and phospholipids to design thermodynamically stable ultra-swollen bicontinuous cubic phases of double-gyroid (Ia3d), double-diamond (Pn3m), and double-primitive (Im3m) space groups, with water channels five times larger than traditional lipidic mesophases, and showing re-entrant behavior upon increasing hydration, of sequences Ia3d→Pn3m→Ia3d and Pn3m→Im3m→Pn3m, unknown in lipid self-assembly. We use these mesophases to crystallize membrane proteins with ECDs inaccessible to conventional in meso crystallization, demonstrating the methodology on the Gloeobacter ligand-gated ion channel (GLIC) protein, and show substantial modulation of packing, molecular contacts and activation state of the ensued proteins crystals, illuminating a general strategy in protein structural biology.


Assuntos
Membrana Celular , Proteínas de Membrana/química , Fosfatidilgliceróis/química , Cristalização/métodos , Ácidos Graxos Monoinsaturados/química , Canais Iônicos , Transição de Fase , Domínios Proteicos , Termodinâmica , Água , Difração de Raios X
16.
J Appl Crystallogr ; 49(Pt 3): 944-952, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27275141

RESUMO

A fast continuous grid scan protocol has been incorporated into the Swiss Light Source (SLS) data acquisition and analysis software suite on the macromolecular crystallography (MX) beamlines. Its combination with fast readout single-photon counting hybrid pixel array detectors (PILATUS and EIGER) allows for diffraction-based identification of crystal diffraction hotspots and the location and centering of membrane protein microcrystals in the lipid cubic phase (LCP) in in meso in situ serial crystallography plates and silicon nitride supports. Diffraction-based continuous grid scans with both still and oscillation images are supported. Examples that include a grid scan of a large (50 nl) LCP bolus and analysis of the resulting diffraction images are presented. Scanning transmission X-ray microscopy (STXM) complements and benefits from fast grid scanning. STXM has been demonstrated at the SLS beamline X06SA for near-zero-dose detection of protein crystals mounted on different types of sample supports at room and cryogenic temperatures. Flash-cooled crystals in nylon loops were successfully identified in differential and integrated phase images. Crystals of just 10 µm thickness were visible in integrated phase images using data collected with the EIGER detector. STXM offers a truly low-dose method for locating crystals on solid supports prior to diffraction data collection at both synchrotron microfocusing and free-electron laser X-ray facilities.

17.
Food Res Int ; 88(Pt A): 3-9, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28847400

RESUMO

Vitamin A deficiency has a widespread occurrence globally and is considered as one of the world's most serious health risk factors. Potential solutions to address this deficiency include dietary diversification or supplementation, but food fortification is generally accepted as the most cost-effective solution. The main issue with food fortification of this vitamin is related to its high instability in food matrices. Dilution of vitamin A in triglycerides is a natural and appropriate way to stabilize this compound. We show here that vitamin A palmitate stability increases with increasing concentration of triglycerides. Moreover, we found that vitamin A palmitate displays improved stability in more saturated oils. Using various temperatures, and Arrhenius plots of experiments performed at storage temperatures between 30°C and 60°C for oils varying by their saturation and crystallinity, we demonstrate that crystallization is not responsible for this phenomenon. Additionally, we show by centrifugation that vitamin A is preferably solubilized in the liquid phase compared to the crystalline phase, explaining that triglyceride crystallization does not stabilize vitamin A palmitate. It is proposed that unsaturated fats generate more oxidation products such as radicals and peroxides, leading to a quicker degradation of vitamin A.

18.
Nat Commun ; 6: 8915, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26573367

RESUMO

Bulk and dispersed cubic liquid crystalline phases (cubosomes), present in the body and in living cell membranes, are believed to play an essential role in biological phenomena. Moreover, their biocompatibility is attractive for nutrient or drug delivery system applications. Here the three-dimensional organization of dispersed cubic lipid self-assembled phases is fully revealed by cryo-electron tomography and compared with simulated structures. It is demonstrated that the interior is constituted of a perfect bicontinuous cubic phase, while the outside shows interlamellar attachments, which represent a transition state between the liquid crystalline interior phase and the outside vesicular structure. Therefore, compositional gradients within cubosomes are inferred, with a lipid bilayer separating at least one water channel set from the external aqueous phase. This is crucial to understand and enhance controlled release of target molecules and calls for a revision of postulated transport mechanisms from cubosomes to the aqueous phase.


Assuntos
Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Bicamadas Lipídicas , Cristais Líquidos/ultraestrutura , Monoglicerídeos , Água , Imageamento Tridimensional , Lipídeos , Espalhamento a Baixo Ângulo
19.
J Control Release ; 204: 78-84, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25744826

RESUMO

The control of the diffusion coefficient by the dimensionality d of the structure appears as a most promising lever to efficiently tune the release rate from lyotropic liquid crystalline (LLC) phases and dispersed particles towards sustained, controlled and targeted release. By using phosphatidylcholine (PC)- and monolinoleine (MLO)-based mesophases with various apolar structural modifiers and water-soluble drugs, we present a comprehensive study of the dimensional structural control of hydrophilic drug release, including 3-d bicontinuous cubic, 2-d lamellar, 1-d hexagonal and 0-d micellar cubic phases in excess water. We investigate how the surfactant, the oil properties and the drug hydrophilicity mitigate or even cancel the effect of structure variation on the drug release rate. Unexpectedly, the observed behavior cannot be fully explained by the thermodynamic partition of the drug into the lipid matrix, which points out to previously overlooked kinetic effects. We therefore interpret our results by discussing the mechanism of structural control of the diffusion rate in terms of drug permeation through the lipid membrane, which includes exchange kinetics. A wide range of implications follow regarding formulation and future developments, both for dispersed LLC delivery systems and topical applications in bulk phase.


Assuntos
Liberação Controlada de Fármacos , Cristais Líquidos/química , Óleos/química , Preparações Farmacêuticas/química , Tensoativos/química , Cafeína/química , Cicloexenos/química , Glucose/química , Glicerídeos/química , Interações Hidrofóbicas e Hidrofílicas , Limoneno , Modelos Químicos , Estrutura Molecular , Transição de Fase , Fosfatidilcolinas/química , Proflavina/química , Terpenos/química , Termodinâmica , Tocoferóis/química , Água/química
20.
Langmuir ; 31(1): 96-104, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25485462

RESUMO

There is a need for the development of low-energy dispersion methods tailored to the formation of phospholipid-based nonlamellar lyotropic liquid crystalline (LLC) particles for delivery system applications. Here, facile formation of nonlamellar LLC particles was obtained by simple mixing of a phosphatidylcholine (PC) liposome solution and an oil-in-water emulsion, with limonene or isooctane as an oil. The internal structure of the particles was controlled by the PC-to-oil ratio, consistently with the sequence observed in bulk phase. For the first time, reverse micellar cubosomes with Fm3̅m inner structure were produced. The size, morphology, and inner structure of the particles were characterized by small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and freeze-fracture cryo scanning electron microscopy (cryo-SEM). These findings pave the way to new strategies in low-energy formulation of LLC delivery systems.


Assuntos
Cristais Líquidos/química , Fosfatidilcolinas/química , Lipossomos/química , Modelos Moleculares , Conformação Molecular , Óleos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA