RESUMO
Inner ear morphogenesis requires tightly regulated epigenetic and transcriptional control of gene expression. CHD7, an ATP-dependent chromodomain helicase DNA-binding protein, and SOX2, an SRY-related HMG box pioneer transcription factor, are known to contribute to vestibular and auditory system development, but their genetic interactions in the ear have not been explored. Here, we analyzed inner ear development and the transcriptional regulatory landscapes in mice with variable dosages of Chd7 and/or Sox2. We show that combined haploinsufficiency for Chd7 and Sox2 results in reduced otic cell proliferation, severe malformations of semicircular canals, and shortened cochleae with ectopic hair cells. Examination of mice with conditional, inducible Chd7 loss by Sox2CreER reveals a critical period (~E9.5) of susceptibility in the inner ear to combined Chd7 and Sox2 loss. Data from genome-wide RNA-sequencing and CUT&Tag studies in the otocyst show that CHD7 regulates Sox2 expression and acts early in a gene regulatory network to control expression of key otic patterning genes, including Pax2 and Otx2. CHD7 and SOX2 directly bind independently and cooperatively at transcription start sites and enhancers to regulate otic progenitor cell gene expression. Together, our findings reveal essential roles for Chd7 and Sox2 in early inner ear development and may be applicable for syndromic and other forms of hearing or balance disorders.
Assuntos
Redes Reguladoras de Genes , Vestíbulo do Labirinto , Animais , Camundongos , Cóclea , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos , Canais Semicirculares , Fatores de TranscriçãoRESUMO
Enlargement of the endolymphatic sac, duct, and vestibular aqueduct (EVA) is the most common inner ear malformation identified in patients with sensorineural hearing loss. EVA is associated with pathogenic variants in SLC26A4. However, in European-Caucasian populations, about 50% of patients with EVA carry no pathogenic alleles of SLC26A4. We tested for the presence of variants in CHD7, a gene known to be associated with CHARGE syndrome, Kallmann syndrome, and hypogonadotropic hypogonadism, in a cohort of 34 families with EVA subjects without pathogenic alleles of SLC26A4. In two families, NM_017780.4: c.3553A > G [p.(Met1185Val)] and c.5390G > C [p.(Gly1797Ala)] were detected as monoallelic CHD7 variants in patients with EVA. At least one subject from each family had additional signs or potential signs of CHARGE syndrome but did not meet diagnostic criteria for CHARGE. In silico modeling of these two missense substitutions predicted detrimental effects upon CHD7 protein structure. Consistent with a role of CHD7 in this tissue, Chd7 transcript and protein were detected in all epithelial cells of the endolymphatic duct and sac of the developing mouse inner ear. These results suggest that some CHD7 variants can cause nonsyndromic hearing loss and EVA. CHD7 should be included in DNA sequence analyses to detect pathogenic variants in EVA patients. Chd7 expression and mutant phenotype data in mice suggest that CHD7 contributes to the formation or function of the endolymphatic sac and duct.
Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Aqueduto Vestibular , Animais , Camundongos , Alelos , DNA Helicases/genética , Perda Auditiva/genética , Perda Auditiva Neurossensorial/genéticaRESUMO
GATA zinc finger domain containing 2A (GATAD2A) is a subunit of the nucleosome remodeling and deacetylase (NuRD) complex. NuRD is known to regulate gene expression during neural development and other processes. The NuRD complex modulates chromatin status through histone deacetylation and ATP-dependent chromatin remodeling activities. Several neurodevelopmental disorders (NDDs) have been previously linked to variants in other components of NuRD's chromatin remodeling subcomplex (NuRDopathies). We identified five individuals with features of an NDD that possessed de novo autosomal dominant variants in GATAD2A. Core features in affected individuals include global developmental delay, structural brain defects, and craniofacial dysmorphology. These GATAD2A variants are predicted to affect protein dosage and/or interactions with other NuRD chromatin remodeling subunits. We provide evidence that a GATAD2A missense variant disrupts interactions of GATAD2A with CHD3, CHD4, and CHD5. Our findings expand the list of NuRDopathies and provide evidence that GATAD2A variants are the genetic basis of a previously uncharacterized developmental disorder.
Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Transtornos do Neurodesenvolvimento , Proteínas Repressoras , Humanos , DNA Helicases/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Proteínas do Tecido Nervoso , Transtornos do Neurodesenvolvimento/genética , Nucleossomos , Proteínas Repressoras/genéticaRESUMO
Mutations in the chromatin remodeling factor CHD7 are the predominant cause of CHARGE syndrome, a congenital disorder that frequently includes ocular coloboma. Although CHD7 is known to be required for proper ocular morphogenesis, its role in retinal development has not been thoroughly investigated. Given that individuals with CHARGE syndrome can experience visual impairment even in the absence of coloboma, a better understanding of CHD7 function in the retina is needed. In this study, we characterized the expression pattern of Chd7 in the developing zebrafish and mouse retina and documented ocular and retinal phenotypes in Chd7 loss-of-function mutants. Zebrafish Chd7 was expressed throughout the retinal neuroepithelium when retinal progenitor cells were actively proliferating, and later in subsets of newly post-mitotic retinal cells. At stages of retinal development when most retinal cell types had terminally differentiated, Chd7 expression remained strong in the ganglion cell layer and in some cells in the inner nuclear layer. Intriguingly, strong expression of Chd7 was also observed in the outer nuclear layer where it was co-expressed with markers of post-mitotic cone and rod photoreceptors. Expression of mouse CHD7 displayed a similar pattern, including expression in the ganglion cells, subsets of inner nuclear layer cells, and in the distal outer nuclear layer as late as P15. Two different mutant chd7 zebrafish lines were characterized for ocular and retinal defects. These mutants displayed microphthalmia, reduced numbers of cone photoreceptors, and truncated rod and cone photoreceptor outer segments. Reduced cone photoreceptor number and abnormal outer segments were also observed in heterozygous Chd7 mutant mice. Taken together, our results in zebrafish and mouse reveal a conserved, previously undescribed role for Chd7 in retinal development and photoreceptor outer segment morphogenesis. Moreover, our work suggests an avenue of future investigation into the pathogenesis of visual system defects in CHARGE syndrome.
Assuntos
Síndrome CHARGE , Peixe-Zebra , Animais , Camundongos , Cromatina/metabolismo , Síndrome CHARGE/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismoRESUMO
CHARGE syndrome is a multiple anomaly developmental disorder characterized by a variety of sensory deficits, including sensorineural hearing loss of unknown etiology. Most cases of CHARGE are caused by heterozygous pathogenic variants in CHD7, the gene encoding Chromodomain DNA-binding Protein 7 (CHD7), a chromatin remodeler important for the development of neurons and glial cells. Previous studies in the Chd7Gt/+ mouse model of CHARGE syndrome showed substantial neuron loss in the early stages of the developing inner ear that are compensated for by mid-gestation. In this study, we sought to determine if early developmental delays caused by Chd7 haploinsufficiency affect neurons, glial cells, and inner hair cell innervation in the mature cochlea. Analysis of auditory brainstem response recordings in Chd7Gt/+ adult animals showed elevated thresholds at 4 kHz and 16 kHz, but no differences in ABR Wave I peak latency or amplitude compared to wild type controls. Proportions of neurons in the Chd7Gt/+ adult spiral ganglion and densities of nerve projections from the spiral ganglion to the organ of Corti were not significantly different from wild type controls. Inner hair cell synapse formation also appeared unaffected in mature Chd7Gt/+ cochleae. However, histological analysis of adult Chd7Gt/+ cochleae revealed diminished satellite glial cells and hypermyelinated Type I spiral ganglion axons. We characterized the expression of CHD7 in developing inner ear glia and found CHD7 to be expressed during a tight window of inner ear development at the Schwann cell precursor stage at E9.5. While cochlear neurons appear to differentiate normally in the setting of Chd7 haploinsufficiency, our results suggest an important role for CHD7 in glial cells in the inner ear. This study highlights the dynamic nature of CHD7 activity during inner ear development in mice and contributes to understanding CHARGE syndrome pathology.
Assuntos
Síndrome CHARGE , Orelha Interna , Camundongos , Animais , Gânglio Espiral da Cóclea/patologia , Síndrome CHARGE/genética , Síndrome CHARGE/patologia , Cromatina , Orelha Interna/patologia , Neuroglia , Proteínas de Ligação a DNA/genéticaRESUMO
Autism spectrum disorder (ASD) represents a group of neurodevelopmental phenotypes with a strong genetic component. An excess of likely gene-disruptive (LGD) mutations in GIGYF1 was implicated in ASD. Here, we report that GIGYF1 is the second-most mutated gene among known ASD high-confidence risk genes. We investigated the inheritance of 46 GIGYF1 LGD variants, including the highly recurrent mutation c.333del:p.L111Rfs*234. Inherited GIGYF1 heterozygous LGD variants were 1.8 times more common than de novo mutations. Among individuals with ASD, cognitive impairments were less likely in those with GIGYF1 LGD variants relative to those with other high-confidence gene mutations. Using a Gigyf1 conditional KO mouse model, we showed that haploinsufficiency in the developing brain led to social impairments without significant cognitive impairments. In contrast, homozygous mice showed more severe social disability as well as cognitive impairments. Gigyf1 deficiency in mice led to a reduction in the number of upper-layer cortical neurons, accompanied by a decrease in proliferation and increase in differentiation of neural progenitor cells. We showed that GIGYF1 regulated the recycling of IGF-1R to the cell surface. KO of GIGYF1 led to a decreased level of IGF-1R on the cell surface, disrupting the IGF-1R/ERK signaling pathway. In summary, our findings show that GIGYF1 is a regulator of IGF-1R recycling. Haploinsufficiency of GIGYF1 was associated with autistic behavior, likely through interference with IGF-1R/ERK signaling pathway.
Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Camundongos , Neurônios/metabolismo , Fenótipo , Transdução de SinaisRESUMO
PURPOSE: The knowledge used to classify genetic variants is continually evolving, and the classification can change on the basis of newly available data. Although up-to-date variant classification is essential for clinical management, reproductive planning, and identifying at-risk family members, there is no consistent practice across laboratories or clinicians on how or under what circumstances to perform variant reinterpretation. METHODS: We conducted exploratory focus groups (N = 142) and surveys (N = 1753) with stakeholders involved in the process of variant reinterpretation (laboratory directors, clinical geneticists, genetic counselors, nongenetic providers, and patients/parents) to assess opinions on key issues, including initiation of reinterpretation, variants to report, termination of the responsibility to reinterpret, and concerns about consent, cost, and liability. RESULTS: Stakeholders widely agreed that there should be no fixed termination point to the responsibility to reinterpret a previously reported genetic variant. There were significant concerns about liability and lack of agreement about many logistical aspects of variant reinterpretation. CONCLUSION: Our findings suggest a need to (1) develop consensus and (2) create transparency and awareness about the roles and responsibilities of parties involved in variant reinterpretation. These data provide a foundation for developing guidelines on variant reinterpretation that can aid in the development of a low-cost, scalable, and accessible approach.
Assuntos
Conselheiros , Testes Genéticos , Grupos Focais , Humanos , Laboratórios , Inquéritos e QuestionáriosAssuntos
Docentes de Medicina , Pediatria , Humanos , Criança , Fatores Sexuais , Centros Médicos AcadêmicosRESUMO
Epigenetic factors are critically important for embryonic and postnatal development. Over the past decade, substantial technological advancements have occurred that now permit the study of epigenetic mechanisms that govern all aspects of inner ear development, from otocyst patterning to maturation and maintenance of hair cell stereocilia. In this review, we highlight how three major classes of epigenetic regulation (DNA methylation, histone modification, and chromatin remodeling) are essential for the development of the inner ear. We highlight open avenues for research and discuss how new tools enable the employment of epigenetic factors in regenerative and therapeutic approaches for hearing and balance disorders.
Assuntos
Epigênese Genética , Audição , Audição/genética , Membrana dos Otólitos , Regulação da Expressão Gênica no DesenvolvimentoRESUMO
Pathogenic variants in GJB2, the gene encoding connexin 26, are the most common cause of autosomal-recessive hereditary deafness. Despite this high prevalence, pathogenic mechanisms leading to GJB2-related deafness are not well understood, and cures are absent. Humans with GJB2-related deafness retain at least some auditory hair cells and neurons, and their deafness is usually stable. In contrast, mice with conditional loss of Gjb2 in supporting cells exhibit extensive loss of hair cells and neurons and rapidly progress to profound deafness, precluding the application of therapies that require intact cochlear cells. In an attempt to design a less severe Gjb2 animal model, we generated mice with inducible Sox10iCre ERT2 -mediated loss of Gjb2. Tamoxifen injection led to reduced connexin 26 expression and impaired function, but cochlear hair cells and neurons survived for 2 months, allowing phenotypic rescue attempts within this time. AAV-mediated gene transfer of GJB2 in mature mutant ears did not demonstrate threshold improvement and in some animals exacerbated hearing loss and resulted in hair cell loss. We conclude that Sox10iCre ERT2 ;Gjb2 flox/flox mice are valuable for studying the biology of connexin 26 in the cochlea. In particular, these mice may be useful for evaluating gene therapy vectors and development of therapies for GJB2-related deafness.
RESUMO
Meis genes have been shown to control essential processes during development of the central and peripheral nervous system. Here we have explored the roles of the Meis2 gene during vertebrate inner ear induction and the formation of the cochlea. Meis2 is expressed in several tissues required for inner ear induction and in non-sensory tissue of the cochlear duct. Global inactivation of Meis2 in the mouse leads to a severely reduced size of the otic vesicle. Tissue-specific knock outs of Meis2 reveal that its expression in the hindbrain is essential for otic vesicle formation. Inactivation of Meis2 in the inner ear itself leads to an aberrant coiling of the cochlear duct. By analyzing transcriptomes obtained from Meis2 mutants and ChIPseq analysis of an otic cell line, we define candidate target genes for Meis2 which may be directly or indirectly involved in cochlear morphogenesis. Taken together, these data show that Meis2 is essential for inner ear formation and provide an entry point to unveil the network underlying proper coiling of the cochlear duct.
RESUMO
Neurodevelopmental disorders (NDDs) are a genetically heterogeneous group of diseases, affecting 1%-3% of children. Whole-exome sequencing (WES) has been widely used as a first-tier tool for identifying genetic causes of rare diseases. Trio-WES was performed in a cohort of 74 pedigrees with NDDs. Exome-based copy number variant (CNV) calling was incorporated into the traditional single-nucleotide variant (SNV) and small insertion/deletion (Indel) analysis pipeline for WES data. An overall positive diagnostic yield of 54.05% (40/74) was obtained in the pipeline of combinational SNV/Indel and CNV analysis, including 35.13% (26/74) from SNV/Indel analysis and 18.92% (14/74) from exome-based CNV analysis, respectively. In total, SNV/Indel analysis identified 38 variants in 28 different genes, of which 24 variants were novel; exome-based CNV analysis identified 14 CNVs, including 2 duplications and 12 deletions, which ranged from 440 bp (single exon) to 16.86 Mb (large fragment) in size. In particular, a hemizygous deletion of exon 1 in the SLC16A2 gene was detected. Based on the diagnostic results, two families underwent prenatal diagnosis and had unaffected babies. The incorporation of exome-based CNV detection into conventional SNV/Indel analysis for a single trio-WES test significantly improved the diagnostic rate, making WES a more powerful, practical, and cost-effective tool in the clinical diagnosis of NDDs.
Assuntos
Transtornos do Neurodesenvolvimento , Simportadores , Criança , Variações do Número de Cópias de DNA , Exoma/genética , Feminino , Humanos , Transportadores de Ácidos Monocarboxílicos/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Gravidez , Estudos Retrospectivos , Simportadores/genética , Sequenciamento do ExomaRESUMO
Epigenetic regulation of gene transcription by chromatin remodeling proteins has recently emerged as an important contributing factor in inner ear development. Pathogenic variants in CHD7, the gene encoding Chromodomain Helicase DNA binding protein 7, cause CHARGE syndrome, which presents with malformations in the developing ear. Chd7 is broadly expressed in the developing mouse otocyst and mature auditory epithelium, yet the pathogenic effects of Chd7 loss in the cochlea are not well understood. Here we characterized cochlear epithelial phenotypes in mice with deletion of Chd7 throughout the otocyst (using Foxg1Cre/+ and Pax2Cre), in the otic mesenchyme (using TCre), in hair cells (using Atoh1Cre), in developing neuroblasts (using NgnCre), or in spiral ganglion neurons (using ShhCre/+). Pan-otic deletion of Chd7 resulted in shortened cochleae with aberrant projections and axonal looping, disorganized, supernumerary hair cells at the apical turn and a narrowed epithelium with missing hair cells in the middle region. Deletion of Chd7 in the otic mesenchyme had no effect on overall cochlear morphology. Loss of Chd7 in hair cells did not disrupt their formation or organization of the auditory epithelium. Similarly, absence of Chd7 in spiral ganglion neurons had no effect on axonal projections. In contrast, deletion of Chd7 in developing neuroblasts led to smaller spiral ganglia and disorganized cochlear neurites. Together, these observations reveal dosage-, tissue-, and time-sensitive cell autonomous roles for Chd7 in cochlear elongation and cochlear neuron organization, with minimal functions for Chd7 in hair cells. These studies provide novel information about roles for Chd7 in development of auditory neurons.
Assuntos
Padronização Corporal , Cóclea/embriologia , Proteínas de Ligação a DNA/fisiologia , Animais , Cóclea/citologia , Cóclea/inervação , Proteínas de Ligação a DNA/genética , Deleção de Genes , Células Ciliadas Auditivas/fisiologia , Camundongos , Camundongos Knockout , Morfogênese/genética , Morfogênese/fisiologia , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/embriologiaAssuntos
Medicina , Médicas/economia , Salários e Benefícios , Feminino , Humanos , Masculino , Fatores Sexuais , Estados UnidosRESUMO
PURPOSE: Genetic testing and results return pose many challenges, even in the era of electronic medical records. Whether results are positive or negative, genetic testing and return of results necessitate patient follow-up, referrals, and coordination between providers. Genetic evaluations typically utilize a variety of testing modalities with differing timetables and/or avenues to return. Therefore, genetic information requires a secondary, unified mechanism for storing and tracking results and communication to facilitate patient care. METHODS: We developed an electronic medical record (EMR) episodes-based module called Pediatric Genetic Tracking to provide a centralized summary of patient tracking information in a single-institution pediatric genetics setting. RESULTS: We created episodes for 6,133 patients evaluated in our division over a 3-year period. They highlighted clinical information for 1,901 different diagnoses and 547 genetic tests, and the involvement of 9 providers, 7 genetic counselors, 61 trainees, and 15 students using two modes of follow-up. CONCLUSION: This Pediatric Genetic Tracking episodes system serves as a "one-stop shop" living document for updated patient genetic information and can be easily expanded to include variant content for broader population level sharing or analysis. These episodes-based modules facilitate communication to support timely and accurate return of genetic test results and follow-up.
Assuntos
Registros Eletrônicos de Saúde , Testes Genéticos , Criança , Comunicação , HumanosRESUMO
CHARGE syndrome, a rare multiple congenital anomaly condition, is caused by haploinsufficiency of the chromatin remodeling protein gene CHD7 (Chromodomain helicase DNA binding protein 7). Brain abnormalities and intellectual disability are commonly observed in individuals with CHARGE, and neuronal differentiation is reduced in CHARGE patient-derived iPSCs and conditional knockout mouse brains. However, the mechanisms of CHD7 function in nervous system development are not well understood. In this study, we asked whether CHD7 promotes gene transcription in neural progenitor cells via changes in chromatin accessibility. We used Chd7 null embryonic stem cells (ESCs) derived from Chd7 mutant mouse blastocysts as a tool to investigate roles of CHD7 in neuronal and glial differentiation. Loss of Chd7 significantly reduced neuronal and glial differentiation. Sholl analysis showed that loss of Chd7 impaired neuronal complexity and neurite length in differentiated neurons. Genome-wide studies demonstrated that loss of Chd7 leads to modified chromatin accessibility (ATAC-seq) and differential nascent expression (Bru-Seq) of neural-specific genes. These results suggest that CHD7 acts preferentially to alter chromatin accessibility of key genes during the transition of NPCs to neurons to promote differentiation. Our results form a basis for understanding the cell stage-specific roles for CHD7-mediated chromatin remodeling during cell lineage acquisition.
Assuntos
Cromatina/química , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Neurais/citologia , Neurônios/citologia , Animais , Blastocisto/metabolismo , Diferenciação Celular , Elementos Facilitadores Genéticos , Epigênese Genética , Perfilação da Expressão Gênica , Camundongos , Camundongos Knockout , Fatores de Transcrição/metabolismoRESUMO
The editors of JCI and JCI Insight are revisiting our editorial processes in light of the strain that the COVID-19 pandemic places on the worldwide scientific community. Here, we discuss adjustments to our decision framework in light of restrictions placed on laboratory working conditions for many of our authors.