Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sarcoma ; 2012: 627254, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22685381

RESUMO

Osteosarcoma is a primary bone malignancy with a particularly high incidence rate in children and adolescents relative to other age groups. The etiology of this often aggressive cancer is currently unknown, because complicated structural and numeric genomic rearrangements in cancer cells preclude understanding of tumour development. In addition, few consistent genetic changes that may indicate effective molecular therapeutic targets have been reported. However, high-resolution techniques continue to improve knowledge of distinct areas of the genome that are more commonly associated with osteosarcomas. Copy number gains at chromosomes 1p, 1q, 6p, 8q, and 17p as well as copy number losses at chromosomes 3q, 6q, 9, 10, 13, 17p, and 18q have been detected by numerous groups, but definitive oncogenes or tumour suppressor genes remain elusive with respect to many loci. In this paper, we examine studies of the genetics of osteosarcoma to comprehensively describe the heterogeneity and complexity of this cancer.

2.
Cancer Genet ; 204(3): 138-46, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21504713

RESUMO

Osteosarcoma is an aggressive sarcoma of the bone characterized by a high level of genetic instability and recurrent DNA deletions and amplifications. This study assesses whether deregulation of microRNA (miRNA) expression is a post-transcriptional mechanism leading to gene expression changes in osteosarcoma. miRNA expression profiling was performed for 723 human miRNAs in 7 osteosarcoma tumors, and 38 miRNAs differentially expressed ≥10-fold (28 under- and 10 overexpressed) were identified. In most cases, observed changes in miRNA expression were DNA copy number-correlated. However, various mechanisms of alteration, including positional and/or epigenetic modifications, may have contributed to the expression change of 23 closely linked miRNAs in cytoband 14q32. To develop a comprehensive molecular genetic map of osteosarcoma, the miRNA profiles were integrated with previously published array comparative genomic hybridization DNA imbalance and mRNA gene expression profiles from a set of partially overlapping osteosarcoma tumor samples. Many of the predicted gene targets of differentially expressed miRNA are involved in intracellular signaling pathways important in osteosarcoma, including Notch, RAS/p21, MAPK, Wnt, and the Jun/FOS pathways. By integrating data on copy number variation with mRNA and miRNA expression profiles, we identified osteosarcoma-associated gene expression changes that are DNA copy number-correlated, DNA copy number-independent, mRNA-driven, and/or modulated by miRNA expression. These data collectively suggest that miRNAs provide a novel post-transcriptional mechanism for fine-tuning the expression of specific genes and pathways relevant to osteosarcoma. Thus, the miRNA identified in this manner may provide a starting point for experimentally modulating therapeutically relevant pathways in this tumor.


Assuntos
Neoplasias Ósseas/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Osteossarcoma/genética , Neoplasias Ósseas/metabolismo , Hibridização Genômica Comparativa , Dosagem de Genes , Perfilação da Expressão Gênica , Genoma Humano , Genômica , Humanos , MicroRNAs/biossíntese , Osteossarcoma/metabolismo
3.
BMC Cancer ; 10: 202, 2010 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-20465837

RESUMO

BACKGROUND: Human osteosarcoma is the most common pediatric bone tumor. There is limited understanding of the molecular mechanisms underlying osteosarcoma oncogenesis, and a lack of good diagnostic as well as prognostic clinical markers for this disease. Recent discoveries have highlighted a potential role of a number of genes including: RECQL4, DOCK5, SPP1, RUNX2, RB1, CDKN1A, P53, IBSP, LSAMP, MYC, TNFRSF1B, BMP2, HISTH2BE, FOS, CCNB1, and CDC5L. METHODS: Our objective was to assess relative expression levels of these 16 genes as potential biomarkers of osteosarcoma oncogenesis and chemotherapy response in human tumors. We performed quantitative expression analysis in a panel of 22 human osteosarcoma tumors with differential response to chemotherapy, and 5 normal human osteoblasts. RESULTS: RECQL4, SPP1, RUNX2, and IBSP were significantly overexpressed, and DOCK5, CDKN1A, RB1, P53, and LSAMP showed significant loss of expression relative to normal osteoblasts. In addition to being overexpressed in osteosarcoma tumor samples relative to normal osteoblasts, RUNX2 was the only gene of the 16 to show significant overexpression in tumors that had a poor response to chemotherapy relative to good responders. CONCLUSION: These data underscore the loss of tumor suppressive pathways and activation of specific oncogenic mechanisms associated with osteosarcoma oncogenesis, while drawing attention to the role of RUNX2 expression as a potential biomarker of chemotherapy failure in osteosarcoma.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Adolescente , Biópsia , Neoplasias Ósseas/patologia , Criança , Pré-Escolar , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Osteossarcoma/patologia , RNA Mensageiro/análise , Estudos Retrospectivos , Falha de Tratamento , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA