Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
PLoS One ; 18(11): e0293905, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38011080

RESUMO

BACKGROUND: Surgery is essential for curative treatment of solid tumors. Evidence from recent retrospective clinical analyses suggests that use of propofol-based total intravenous anesthesia during cancer resection surgery is associated with improved overall survival compared to inhaled volatile anesthesia. Evaluating these findings in prospective clinical studies is required to inform definitive clinical guidelines but will take many years and requires biomarkers to monitor treatment effect. Therefore, we examined the effect of different anesthetic agents on cancer recurrence in mouse models of breast cancer with the overarching goal of evaluating plausible mechanisms that could be used as biomarkers of treatment response. METHODS: To test the hypothesis that volatile anesthesia accelerates breast cancer recurrence after surgical resection of the primary tumor, we used three mouse models of breast cancer. We compared volatile sevoflurane anesthesia with intravenous propofol anesthesia and used serial non-invasive bioluminescent imaging to track primary tumor recurrence and metastatic recurrence. To determine short-term perioperative effects, we evaluated the effect of anesthesia on vascular integrity and immune cell changes after surgery in animal models. RESULTS: Survival analyses found that the kinetics of cancer recurrence and impact on survival were similar regardless of the anesthetic agent used during cancer surgery. Vascular permeability, immune cell infiltration and cytokine profiles showed no statistical difference after resection with inhaled sevoflurane or intravenous propofol anesthesia. CONCLUSIONS: These preclinical studies found no evidence that choice of anesthetic agent used during cancer resection surgery affected either short-term perioperative events or long-term cancer outcomes in mouse models of breast cancer. These findings raise the possibility that mouse models do not recapitulate perioperative events in cancer patients. Nonetheless, the findings suggest that future evaluation of effects of anesthesia on cancer outcomes should focus on cancer types other than breast cancer.


Assuntos
Anestésicos Inalatórios , Anestésicos , Neoplasias da Mama , Propofol , Animais , Camundongos , Humanos , Feminino , Neoplasias da Mama/patologia , Propofol/farmacologia , Sevoflurano/farmacologia , Estudos Prospectivos , Estudos Retrospectivos , Recidiva Local de Neoplasia , Anestesia Intravenosa/métodos , Anestesia Geral , Biomarcadores , Anestésicos Intravenosos/farmacologia , Anestésicos Inalatórios/farmacologia
2.
Clin Transl Radiat Oncol ; 43: 100682, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37808452

RESUMO

Background: The kinetics of circulating tumor DNA (ctDNA) release following commencement of radiotherapy or chemoradiotherapy may reflect early tumour cell killing. We hypothesised that an increase in ctDNA may be observed after the first fraction of radiotherapy and that this could have clinical significance. Materials and methods: ctDNA analysis was performed as part of a prospective, observational clinical biomarker study of non-small cell lung cancer (NSCLC) patients, treated with curative-intent radiotherapy or chemoradiotherapy. Blood was collected at predefined intervals before, during (including 24 h after fraction 1 of radiotherapy) and after radiotherapy/chemoradiotherapy. Mutation-specific droplet digital PCR assays used to track ctDNA levels during and after treatment. Results: Sequential ctDNA results are available for 14 patients with known tumor-based mutations, including in EGFR, KRAS and TP53, with a median follow-up of 723 days (range 152 to 1110). Treatments delivered were fractionated radiotherapy/chemoradiotherapy, in 2-2.75 Gy fractions (n = 12), or stereotactic ablative body radiotherapy (SABR, n = 2). An increase in ctDNA was observed after fraction 1 in 3/12 patients treated with fractionated radiotherapy with a complete set of results, including in 2 cases where ctDNA was initially undetectable. Neither SABR patient had detectable ctDNA immediately before or after radiotherapy, but one of these later relapsed systemically with a high detected ctDNA concentration. Conclusions: A rapid increase in ctDNA levels was observed after one fraction of fractionated radiotherapy in three cases. Further molecular characterization will be required to understand if a "spike" in ctDNA levels could represent rapid initial tumor cell destruction and could have clinical value as a surrogate for early treatment response and/or as a means of enriching ctDNA for mutational profiling.

3.
Radiother Oncol ; 175: 169-177, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35952978

RESUMO

FLASH radiotherapy (FLASH-RT) and spatially fractionated radiation therapy (SFRT) are two new therapeutical strategies that use non-standard dose delivery methods to reduce normal tissue toxicity and increase the therapeutic index. Although likely based on different mechanisms, both FLASH-RT and SFRT have shown to elicit radiobiological effects that significantly differ from those induced by conventional radiotherapy. With the therapeutic potential having been established separately for each technique, the combination of FLASH-RT and SFRT could therefore represent a winning alliance. In this review, we discuss the state of the art, advantages and current limitations, potential synergies, and where a combination of these two techniques could be implemented today or in the near future.


Assuntos
Fracionamento da Dose de Radiação , Humanos , Dosagem Radioterapêutica
4.
Int J Radiat Oncol Biol Phys ; 114(3): 478-493, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35934161

RESUMO

PURPOSE: Synchrotron-generated microbeam radiation therapy (MRT) represents an innovative preclinical type of cancer radiation therapy with an excellent therapeutic ratio. Beyond local control, metastatic spread is another important endpoint to assess the effectiveness of radiation therapy treatment. Currently, no data exist on an association between MRT and metastasis. Here, we evaluated the ability of MRT to delay B16F10 murine melanoma progression and locoregional metastatic spread. METHODS AND MATERIALS: We assessed the primary tumor response and the extent of metastasis in sentinel lymph nodes in 2 cohorts of C57BL/6J mice, one receiving a single MRT and another receiving 2 MRT treatments delivered with a 10-day interval. We compared these 2 cohorts with synchrotron broad beam-irradiated and nonirradiated mice. In addition, using multiplex quantitative platforms, we measured plasma concentrations of 34 pro- and anti-inflammatory cytokines and frequencies of immune cell subsets infiltrating primary tumors that received either 1 or 2 MRT treatments. RESULTS: Two MRT treatments were significantly more effective for local control than a single MRT. Remarkably, the second MRT also triggered a pronounced regression of out-of-radiation field locoregional metastasis. Augmentation of CXCL5, CXCL12, and CCL22 levels after the second MRT indicated that inhibition of melanoma progression could be associated with increased activity of antitumor neutrophils and T-cells. Indeed, we demonstrated elevated infiltration of neutrophils and activated T-cells in the tumors after the second MRT. CONCLUSIONS: Our study highlights the importance of monitoring metastasis after MRT and provides the first MRT fractionation schedule that promotes local and locoregional control with the potential to manage distant metastasis.


Assuntos
Melanoma , Síncrotrons , Animais , Citocinas , Melanoma/radioterapia , Camundongos , Camundongos Endogâmicos C57BL , Síndrome , Linfócitos T
5.
Biomedicines ; 10(4)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35453485

RESUMO

Radiation therapy (RT) is a vital component of multimodal cancer treatment, and its immunomodulatory effects are a major focus of current therapeutic strategies. Macrophages are some of the first cells recruited to sites of radiation-induced injury where they can aid in tissue repair, propagate radiation-induced fibrogenesis and influence tumour dynamics. Microbeam radiation therapy (MRT) is a unique, spatially fractionated radiation modality that has demonstrated exceptional tumour control and reduction in normal tissue toxicity, including fibrosis. We conducted a morphological analysis of MRT-irradiated normal liver, lung and skin tissues as well as lung and melanoma tumours. MRT induced distinct patterns of DNA damage, reflecting the geometry of the microbeam array. Macrophages infiltrated these regions of peak dose deposition at variable timepoints post-irradiation depending on the tissue type. In normal liver and lung tissue, macrophages clearly demarcated the beam path by 48 h and 7 days post-irradiation, respectively. This was not reflected, however, in normal skin tissue, despite clear DNA damage marking the beam path. Persistent DNA damage was observed in MRT-irradiated lung carcinoma, with an accompanying geometry-specific influx of mixed M1/M2-like macrophage populations. These data indicate the unique potential of MRT as a tool to induce a remarkable accumulation of macrophages in an organ/tissue-specific manner. Further characterization of these macrophage populations is warranted to identify their organ-specific roles in normal tissue sparing and anti-tumour responses.

6.
Int J Mol Sci ; 22(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299373

RESUMO

Melanoma is the deadliest type of skin cancer, due to its invasiveness and limited treatment efficacy. The main therapy for primary melanoma and solitary organ metastases is wide excision. Adjuvant therapy, such as chemotherapy and targeted therapies are mainly used for disseminated disease. Radiotherapy (RT) is a powerful treatment option used in more than 50% of cancer patients, however, conventional RT alone is unable to eradicate melanoma. Its general radioresistance is attributed to overexpression of repair genes in combination with cascades of biochemical repair mechanisms. A novel sophisticated technique based on synchrotron-generated, spatially fractionated RT, called Microbeam Radiation Therapy (MRT), has been shown to overcome these treatment limitations by allowing increased dose delivery. With MRT, a collimator subdivides the homogeneous radiation field into an array of co-planar, high-dose microbeams that are tens of micrometres wide and spaced a few hundred micrometres apart. Different preclinical models demonstrated that MRT has the potential to completely ablate tumours, or significantly improve tumour control while dramatically reducing normal tissue toxicity. Here, we discuss the role of conventional RT-induced immunity and the potential for MRT to enhance local and systemic anti-tumour immune responses. Comparative gene expression analysis from preclinical tumour models indicated a specific gene signature for an 'MRT-induced immune effect'. This focused review highlights the potential of MRT to overcome the inherent radioresistance of melanoma which could be further enhanced for future clinical use with combined treatment strategies, in particular, immunotherapy.


Assuntos
Melanoma/radioterapia , Animais , Terapia Combinada/métodos , Humanos , Imunidade/imunologia , Imunoterapia/métodos , Melanoma/imunologia , Melanoma/terapia , Radioterapia/métodos , Síncrotrons
7.
Front Oncol ; 11: 685598, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34094987

RESUMO

Synchrotron radiation, especially microbeam radiotherapy (MRT), has a great potential to improve cancer radiotherapy, but non-targeted effects of synchrotron radiation have not yet been sufficiently explored. We have previously demonstrated that scattered synchrotron radiation induces measurable γ-H2AX foci, a biomarker of DNA double-strand breaks, at biologically relevant distances from the irradiated field that could contribute to the apparent accumulation of bystander DNA damage detected in cells and tissues outside of the irradiated area. Here, we quantified an impact of scattered radiation to DNA damage response in "naïve" cells sharing the medium with the cells that were exposed to synchrotron radiation. To understand the effect of genetic alterations in naïve cells, we utilised p53-null and p53-wild-type human colon cancer cells HCT116. The cells were grown in two-well chamber slides, with only one of nine zones (of equal area) of one well irradiated with broad beam or MRT. γ-H2AX foci per cell values induced by scattered radiation in selected zones of the unirradiated well were compared to the commensurate values from selected zones in the irradiated well, with matching distances from the irradiated zone. Scattered radiation highly impacted the DNA damage response in both wells and a pronounced distance-independent bystander DNA damage was generated by broad-beam irradiations, while MRT-generated bystander response was negligible. For p53-null cells, a trend for a reduced response to scattered irradiation was observed, but not to bystander signalling. These results will be taken into account for the assessment of genotoxic effects in surrounding non-targeted tissues in preclinical experiments designed to optimise conditions for clinical MRT and for cancer treatment in patients.

8.
Environ Int ; 149: 106212, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33293042

RESUMO

Ionizing radiation interacts with the immune system in many ways with a multiplicity that mirrors the complexity of the immune system itself: namely the need to maintain a delicate balance between different compartments, cells and soluble factors that work collectively to protect, maintain, and restore tissue function in the face of severe challenges including radiation damage. The cytotoxic effects of high dose radiation are less relevant after low dose exposure, where subtle quantitative and functional effects predominate that may go unnoticed until late after exposure or after a second challenge reveals or exacerbates the effects. For example, low doses may permanently alter immune fitness and therefore accelerate immune senescence and pave the way for a wide spectrum of possible pathophysiological events, including early-onset of age-related degenerative disorders and cancer. By contrast, the so called low dose radiation therapy displays beneficial, anti-inflammatory and pain relieving properties in chronic inflammatory and degenerative diseases. In this review, epidemiological, clinical and experimental data regarding the effects of low-dose radiation on the homeostasis and functional integrity of immune cells will be discussed, as will be the role of immune-mediated mechanisms in the systemic manifestation of localized exposures such as inflammatory reactions. The central conclusion is that ionizing radiation fundamentally and durably reshapes the immune system. Further, the importance of discovery of immunological pathways for modifying radiation resilience amongst other research directions in this field is implied.


Assuntos
Neoplasias , Radiação Ionizante , Relação Dose-Resposta à Radiação , Humanos , Sistema Imunitário , Inflamação
9.
Cancers (Basel) ; 12(9)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899789

RESUMO

Thoracic radiotherapy (RT) is required for the curative management of inoperable lung cancer, however, treatment delivery is limited by normal tissue toxicity. Prior studies suggest that using radiation-induced DNA damage response (DDR) in peripheral blood mononuclear cells (PBMC) has potential to predict RT-associated toxicities. We collected PBMC from 38 patients enrolled on a prospective clinical trial who received definitive fractionated RT for non-small cell lung cancer. DDR was measured by automated counting of nuclear γ-H2AX foci in immunofluorescence images. Analysis of samples collected before, during and after RT demonstrated the induction of DNA damage in PBMC collected shortly after RT commenced, however, this damage repaired later. Radiation dose to the tumour and lung contributed to the in vivo induction of γ-H2AX foci. Aliquots of PBMC collected before treatment were also irradiated ex vivo, and γ-H2AX kinetics were analyzed. A trend for increasing of fraction of irreparable DNA damage in patients with higher toxicity grades was revealed. Slow DNA repair in three patients was associated with a combined dysphagia/cough toxicity and was confirmed by elevated in vivo RT-generated irreparable DNA damage. These results warrant inclusion of an assessment of DDR in PBMC in a panel of predictive biomarkers that would identify patients at a higher risk of toxicity.

10.
Radiat Res ; 194(6): 678-687, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32991732

RESUMO

Abscopal effects are an important aspect of targeted radiation therapy due to their implication in normal tissue toxicity from chronic inflammatory responses and mutagenesis. Gene expression can be used to determine abscopal effects at the molecular level. Synchrotron microbeam radiation therapy utilizing high-intensity X rays collimated into planar microbeams is a promising cancer treatment due to its reported ability to ablate tumors with less damage to normal tissues compared to conventional broadbeam radiation therapy techniques. The low scatter of synchrotron radiation enables microbeams to be delivered to tissue effectively, and is also advantageous for out-of-field studies because there is minimal interference from scatter. Mouse legs were irradiated at a dose rate of 49 Gy/s and skin samples in the out-of-field areas were collected. The out-of-field skin showed an increase in Tnf expression and a decrease in Mdm2 expression, genes associated with inflammation and DNA damage. These expression effects from microbeam exposure were similar to those found with broadbeam exposure. In immune-deficient Ccl2 knockout mice, we identified a different gene expression profile which showed an early increase in Mdm2, Tgfb1, Tnf and Ccl22 expression in out-of-field skin that was not observed in the immune-proficient mice. Our results suggest that the innate immune system is involved in out-of-field tissue responses and alterations in the immune response may not eliminate abscopal effects, but could change them.


Assuntos
Dano ao DNA/genética , Expressão Gênica/efeitos da radiação , Imunidade Inata/efeitos da radiação , Síncrotrons , Animais , Quimiocina CCL2/genética , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
12.
Int J Radiat Oncol Biol Phys ; 103(2): 521-531, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30312716

RESUMO

PURPOSE: There is growing interest in developing individually tailored cancer radiation therapy (RT), wherein patients with high intrinsic radiosensitivity are identified before commencing treatment, to minimize severe adverse reactions. In a previous retrospective study of severely radiosensitive RT patients, we established a functional assay with a high predictive capability. The assay involves ex vivo irradiation of peripheral blood mononuclear cells and analysis of DNA repair using the γ-H2AX assay. It is unknown whether RS is a fixed phenomenon or is modulated under different conditions. We now report the impact of RT on the apparent radiosensitivity, as reflected by the assay. METHODS AND MATERIALS: Peripheral blood mononuclear cells of 11 patients with non-small cell lung cancer were collected before, during, and after RT. Quantitative parameters derived from the nonlinear regression analysis of γ-H2AX foci were applied to examine the cellular radiation response. RESULTS: Although the repair rate and foci yield remained constant during and after RT, the "unrepairable" component of γ-H2AX foci decreased over the course of treatment in 7 patients, signifying a generally enhanced DNA repair capacity. Interestingly, enhanced repair capacity tended to be associated with a poorer response to RT. CONCLUSIONS: Although generalization of these results into normal and tumor tissues warrants further investigation, the findings of this study have important implications in future strategies for identifying radiosensitive individuals before exposure to RT. We can anticipate that the threshold values that will discriminate radiosensitive patients in a future prospective trial will differ from those established in the retrospective study.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Reparo do DNA/efeitos da radiação , Leucócitos Mononucleares/citologia , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/radioterapia , Idoso , Apoptose , Dano ao DNA , Feminino , Histonas/metabolismo , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Estudos Prospectivos , Tolerância a Radiação , Análise de Regressão , Resultado do Tratamento
13.
Int J Radiat Oncol Biol Phys ; 103(5): 1184-1193, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30529375

RESUMO

PURPOSE: Nontargeted effects of ionizing radiation, by which unirradiated cells and tissues are also damaged, are a relatively new paradigm in radiobiology. We recently reported radiation-induced abscopal effects (RIAEs) in normal tissues; namely, DNA damage, apoptosis, and activation of the local and systemic immune responses in C57BL6/J mice after irradiation of a small region of the body. High-dose-rate, synchrotron-generated broad beam or multiplanar x-ray microbeam radiation therapy was used with various field sizes and doses. This study explores components of the immune system involved in the generation of these abscopal effects. METHODS AND MATERIALS: The following mice with various immune deficiencies were irradiated with the microbeam radiation therapy beam: (1) SCID/IL2γR-/- (NOD SCID gamma, NSG) mice, (2) wild-type C57BL6/J mice treated with an antibody-blocking macrophage colony-stimulating factor 1 receptor, which depletes and alters the function of macrophages, and (3) chemokine ligand 2/monocyte chemotactic protein 1 null mice. Complex DNA damage (ie, DNA double-strand breaks), oxidatively induced clustered DNA lesions, and apoptotic cells in tissues distant from the irradiation site were measured as RIAE endpoints and compared with those in wild-type C57BL6/J mice. RESULTS: Wild-type mice accumulated double-strand breaks, oxidatively induced clustered DNA lesions, and apoptosis, enforcing our RIAE model. However, these effects were completely or partially abrogated in mice with immune disruption, highlighting the pivotal role of the immune system in propagation of systemic genotoxic effects after localized irradiation. CONCLUSIONS: These results underline the importance of not only delineating the best strategies for tumor control but also mitigating systemic radiation toxicity.


Assuntos
Apoptose , Quebras de DNA de Cadeia Dupla , Sistema Imunitário/fisiologia , Lesões Experimentais por Radiação/imunologia , Animais , Efeito Espectador , Quimiocina CCL2/sangue , Quimiocina CCL2/genética , DNA/isolamento & purificação , Feminino , Ligantes , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Estresse Oxidativo , Doses de Radiação , Lesões Experimentais por Radiação/etiologia , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Síncrotrons , Fator de Crescimento Transformador beta1/sangue
14.
Int J Radiat Oncol Biol Phys ; 102(3): 627-634, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30244880

RESUMO

PURPOSE: A priori identification of the small proportion of radiation therapy patients who prove to be severely radiosensitive is a long-held goal in radiation oncology. A number of published studies indicate that analysis of the DNA damage response after ex vivo irradiation of peripheral blood lymphocytes, using the γ-H2AX assay to detect DNA damage, provides a basis for a functional assay for identification of the small proportion of severely radiosensitive cancer patients undergoing radiotherapy. METHODS AND MATERIALS: We introduce a new, more rigorous, integrated approach to analysis of radiation-induced γ-H2AX response, using Bayesian statistics. RESULTS: This approach shows excellent discrimination between radiosensitive and non-radiosensitive patient groups described in a previously reported data set. CONCLUSIONS: Bayesian statistical analysis provides a more appropriate and reliable methodology for future prospective studies.


Assuntos
Teorema de Bayes , Neoplasias/sangue , Tolerância a Radiação/genética , Biomarcadores , Dano ao DNA , Bases de Dados Factuais , Relação Dose-Resposta à Radiação , Feminino , Histonas/química , Humanos , Linfócitos/efeitos da radiação , Masculino , Modelos Teóricos , Método de Monte Carlo , Neoplasias/radioterapia , Estudos Prospectivos , Radioterapia , Reprodutibilidade dos Testes , Estudos Retrospectivos , Fatores de Tempo
15.
Clin Exp Metastasis ; 35(4): 219-221, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29971590

RESUMO

The idea for this Special Issue originated from our recent review in Nature Reviews Clinical Oncology entitled "Does the mobilization of circulating tumour cells during cancer therapy cause metastasis?" Martin et al. (Nat Rev Clin Oncol 14:32-44, 2017). While preparing this review, it became evident that an overwhelming number of preclinical and clinical papers were implicating the involvement of all the major and indispensable cancer treatment modalities in causing increased numbers of tumour cells in circulation (CTCs), and potentially increased risk of distant metastasis. This led to our decision to expand the topic by addressing some of the issues associated with therapy-induced tumour progression. Here, we present papers from ten research groups who give a comprehensive coverage of the biological processes and clinical procedures that can lead to enhanced metastasis and/or tumour recurrence. Our authors provide evidence that all the common therapies, including radiotherapy, chemotherapy, fine needle biopsies, surgical procedures and anaesthesia have the potential to contribute to tumour progression.


Assuntos
Inoculação de Neoplasia , Neoplasias/patologia , Neoplasias/terapia , Células Neoplásicas Circulantes/patologia , Humanos , Metástase Neoplásica
16.
Clin Exp Metastasis ; 35(4): 223-236, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29159430

RESUMO

Radiation therapy is an effective means of achieving local control in a wide range of primary tumours, with the reduction in the size of the tumour(s) thought to mediate the observed reductions in metastatic spread in clinical trials. However, there is evidence to suggest that the complex changes induced by radiation in the tumour environment can also present metastatic risks that may counteract the long-term efficacy of the treatment. More than 25 years ago, several largely theoretical mechanisms by which radiation exposure might increase metastatic risk were postulated. These include the direct release of tumour cells into the circulation, systemic effects of tumour and normal tissue irradiation and radiation-induced changes in tumour cell phenotype. Here, we review the data that has since emerged to either support or refute these putative mechanisms focusing on how the unique radiobiology underlying modern radiotherapy modalities might alter these risks.


Assuntos
Neoplasias Induzidas por Radiação/patologia , Neoplasias/patologia , Neoplasias/radioterapia , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/efeitos da radiação , Animais , Humanos , Metástase Neoplásica , Neoplasias/sangue , Radiobiologia , Radioterapia/efeitos adversos
17.
Cancer Res ; 77(22): 6389-6399, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29113972

RESUMO

The importance of nontargeted (systemic) effects of ionizing radiation is attracting increasing attention. Exploiting synchrotron radiation generated by the Imaging and Medical Beamline at the Australian Synchrotron, we studied radiation-induced nontargeted effects in C57BL/6 mice. Mice were locally irradiated with a synchrotron X-ray broad beam and a multiplanar microbeam radiotherapy beam. To assess the influence of the beam configurations and variations in peak dose and irradiated area in the response of normal tissues outside the irradiated field at 1 and 4 days after irradiation, we monitored oxidatively induced clustered DNA lesions (OCDL), DNA double-strand breaks (DSB), apoptosis, and the local and systemic immune responses. All radiation settings induced pronounced persistent systemic effects in mice, which resulted from even short exposures of a small irradiated area. OCDLs were elevated in a wide variety of unirradiated normal tissues. In out-of-field duodenum, there was a trend for elevated apoptotic cell death under most irradiation conditions; however, DSBs were elevated only after exposure to lower doses. These genotoxic events were accompanied by changes in plasma concentrations of macrophage-derived cytokine, eotaxin, IL10, TIMP1, VEGF, TGFß1, and TGFß2, along with changes in tissues in frequencies of macrophages, neutrophils, and T lymphocytes. Overall, our findings have implications for the planning of therapeutic and diagnostic radiation treatments to reduce the risk of radiation-related adverse systemic effects. Cancer Res; 77(22); 6389-99. ©2017 AACR.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , Pele/efeitos da radiação , Síncrotrons , Raios X , Animais , Apoptose/genética , Apoptose/efeitos da radiação , Citocinas/sangue , Citocinas/metabolismo , Relação Dose-Resposta à Radiação , Macrófagos/metabolismo , Macrófagos/efeitos da radiação , Camundongos Endogâmicos C57BL , Lesões Experimentais por Radiação/genética , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/prevenção & controle , Pele/imunologia , Pele/metabolismo , Fatores de Tempo
18.
Cancers (Basel) ; 9(11)2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29077012

RESUMO

Whilst the near instantaneous physical interaction of radiation energy with living cells leaves little opportunity for inter-individual variation in the initial yield of DNA damage, all the downstream processes in how damage is recognized, repaired or resolved and therefore the ultimate fate of cells can vary across the population. In the clinic, this variability is observed most readily as rare extreme sensitivity to radiotherapy with acute and late tissue toxic reactions. Though some radiosensitivity can be anticipated in individuals with known genetic predispositions manifest through recognizable phenotypes and clinical presentations, others exhibit unexpected radiosensitivity which nevertheless has an underlying genetic cause. Currently, functional assays for cellular radiosensitivity represent a strategy to identify patients with potential radiosensitivity before radiotherapy begins, without needing to discover or evaluate the impact of the precise genetic determinants. Yet, some of the genes responsible for extreme radiosensitivity would also be expected to confer susceptibility to radiation-induced cancer, which can be considered another late adverse event associated with radiotherapy. Here, the utility of functional assays of radiosensitivity for identifying individuals susceptible to radiotherapy-induced second cancer is discussed, considering both the common mechanisms and important differences between stochastic radiation carcinogenesis and the range of deterministic acute and late toxic effects of radiotherapy.

19.
Trends Mol Med ; 23(4): 310-319, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28279624

RESUMO

Upon DNA damage or other stressors, the tumor suppressor p53 is activated, leading to transient expression of the cyclin-dependent kinase inhibitor (CKI) p21. This either triggers momentary G1 cell cycle arrest or leads to a chronic state of senescence or apoptosis, a form of genome guardianship. In the clinic, the presence of p21 has been considered an indicator of wildtype p53 activity. However, recent evidence suggests that p21 also acts as an oncogenic factor in a p53-deficient environment. Here, we discuss the controversial aspects of the two-faced involvement of p21 in cancer and speculate on how this new information may increase our understanding of its role in cancer pathogenesis. Prevailing notions indicate that p21 might also act as antiapoptotic agent, which may have relevant implications for future therapeutic strategies.


Assuntos
Apoptose , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Neoplasias/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Inibidor de Quinase Dependente de Ciclina p21/genética , Dano ao DNA , Reparo do DNA , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/genética
20.
Lung Cancer Manag ; 6(4): 129-139, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30643579

RESUMO

Surgery is the main curative therapy for patients with localized non-small-cell lung cancer while radiotherapy (RT), alone or with concurrent platinum-based chemotherapy, remains the primary curative modality for locoregionally advanced non-small-cell lung cancer. The risk of distant metastasis is high after curative-intent treatment, largely attributable to the presence of undetected micrometastases, but which could also be related to treatment-related increases in circulating tumor cells (CTCs). CTC mobilization by RT or systemic therapies might either reflect efficient tumor destruction with improved prognosis, or might promote metastasis and thus represent a potential therapeutic target. RT may induce prometastatic biological alterations in CTC at the cellular level, which are detectable by 'liquid biopsies', though their rarity represents a major challenge. Improved methods of isolation and ex vivo propagation will be essential for the future of CTC research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA