Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(5): 7463-7472, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439425

RESUMO

We study theoretically and demonstrate experimentally a 16-band narrow band wavelength selective filter in the near-infrared range. The combination of a pair of distributed Bragg reflectors with a sub-wavelength grating metasurface embedded in the intra-cavity provides a narrow response which can be tuned by adjusting the geometry of the sub-wavelength grating metasurface. The key advantage of this approach is its ease of fabrication, where the spectral response is tuned by merely changing the grating period, resulting in a perfectly planar geometry that can be easily integrated with a broad variety of photodetectors, thus enabling attractive applications such as bio-imaging, time-of-flight sensors and LiDAR. The experimental results are supported by numerical simulations and effective medium theory that unveil the mechanisms that lead to the optical response of the device. It is also shown how the polarization dependence of the structure can be used to determine very accurately the polarization of incoming light.

2.
ACS Photonics ; 10(9): 3275-3282, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37743946

RESUMO

It has been observed that achiral nanoparticles, such as flat helices, may be subjected to an optical torque even when illuminated by normally incident linearly polarized light. However, the origin of this fascinating phenomenon has so far remained mostly unexplained. We therefore propose an exhaustive discussion that provides a clear and rigorous explanation for the existence of such a torque. Using multipolar theory and taking into account nonlocal interactions, we find that this torque stems from multipolar pseudochiral responses that generate both spin and orbital angular momenta. We also show that the nature of these peculiar responses makes them particularly dependent on the asymmetry of the particles. By elucidating the origin of this type of torque, this work may prove instrumental for the design of high-performance nano-rotors.

3.
Opt Express ; 31(14): 22982-22996, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37475394

RESUMO

We derive generalized sheet transition conditions (GSTCs) including dipoles and quadrupoles, using generalized functions (distributions). This derivation verifies that the GSTCs are valid for metasurfaces in non-homogeneous environments, such as for practical metasurfaces fabricated on a substrate. The inclusion of quadrupoles and modeling of spatial dispersion provides additional hyper-susceptibility components which serve as degrees of freedom for wave transformations. We leverage them to demonstrate a generalized Brewster effect with multiple angles of incidence at which reflection is suppressed, along with an "anti-Brewster" effect where transmission is suppressed.

4.
ACS Appl Mater Interfaces ; 15(27): 33056-33064, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37385597

RESUMO

While interference colors have been known for a long time, conventional color filters have large spatial dimensions and cannot be used to create compact pixelized color pictures. Here we report a simple yet elegant interference-based method of creating microscopic structural color pixels using a single-mask process using standard UV photolithography on an all-dielectric substrate. The technology makes use of the varied aperture-controlled physical deposition rate of low-temperature silicon dioxide inside a hollow cavity to create a thin-film stack with the controlled bottom layer thickness. The stack defines which wavelengths of the reflected light interfere constructively, and thus the cavities act as micrometer-scale pixels of a predefined color. Combinations of such pixels produce vibrant colorful pictures visible to the naked eye. Being fully CMOS-compatible, wafer-scale, and not requiring costly electron-beam lithography, such a method paves the way toward large scale applications of structural colors in commercial products.

5.
ACS Photonics ; 10(6): 1882-1889, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37363628

RESUMO

Reflectivity modulation is a critical feature for applications in telecommunications, 3D imaging and printing, advanced laser machining, or portable displays. Tunable metasurfaces have recently emerged as a promising implementation for miniaturized and high-performance tunable optical components. Commonly, metasurface response tuning is achieved by electro-optical effects. In this work, we demonstrate reflectivity modulation based on a nanostructured, mechanically tunable, metasurface, consisting of an amorphous silicon nanopillar array and a suspended amorphous silicon membrane with integrated electrostatic actuators. With a membrane displacement of only 150 nm, we demonstrate reflectivity modulation by Mie resonance enhanced absorption in the pillar array, leading to a reflectivity contrast ratio of 1:3 over the spectral range from 400-530 nm. With fast, low-power electrostatic actuation and a broadband response in the visible spectrum, this mechanically tunable metasurface reflectivity modulator could enable high frame rate dynamic reflective displays.

6.
Nano Lett ; 23(8): 3362-3368, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37043888

RESUMO

We demonstrate a nonlinear plasmonic metasurface that exhibits strongly asymmetric second-harmonic generation: nonlinear scattering is efficient upon excitation in one direction, and it is substantially suppressed when the excitation direction is reversed, thus enabling a diode-like functionality. A significant (approximately 10 dB) extinction ratio of SHG upon opposite excitations is measured experimentally, and those findings are substantiated with full-wave simulations. This effect is achieved by employing a combination of two commonly used metals─aluminum and silver─producing a material composition asymmetry that results in a bianisotropic response of the system, as confirmed by performing homogenization analysis and extracting an effective susceptibility tensor. Finally, we discuss the implications of our results from the more fundamental perspectives of reciprocity and time-reversal asymmetry.

7.
Molecules ; 28(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36985832

RESUMO

Understanding the behavior of surfactants at interfaces is crucial for many applications in materials science and chemistry. Optical tweezers combined with trajectory analysis can become a powerful tool for investigating surfactant characteristics. In this study, we perform trap-and-track analysis to compare the behavior of cetyltrimethylammonium bromide (CTAB) and cetyltrimethylammonium chloride (CTAC) at water-glass interfaces. We use optical tweezers to trap a gold nanoparticle and statistically analyze the particle's movement in response to various surfactant concentrations, evidencing the rearrangement of surfactants adsorbed on glass surfaces. Our results show that counterions have a significant effect on surfactant behavior at the interface. The greater binding affinity of bromide ions to CTA+ micelle surfaces reduces the repulsion among surfactant head groups and enhances the mobility of micelles adsorbed on the interface. Our study provides valuable insights into the behavior of surfactants at interfaces and highlights the potential of optical tweezers for surfactant research. The development of this trap-and-track approach can have important implications for various applications, including drug delivery and nanomaterials.

8.
Anal Chem ; 95(5): 2958-2966, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36692365

RESUMO

Dielectrophoresis (DEP) is a versatile tool for the precise microscale manipulation of a broad range of substances. To unleash the full potential of DEP for the manipulation of complex molecular-sized particulates such as proteins requires the development of appropriate theoretical models and their comprehensive experimental verification. Here, we construct an original DEP platform and test the Hölzel-Pethig empirical model for protein DEP. Three different proteins are studied: lysozyme, BSA, and lactoferrin. Their molecular Clausius-Mossotti function is obtained by detecting their trapping event via the measurement of the fluorescence intensity to identify the minimum electric field gradient required to overcome dispersive forces. We observe a significant discrepancy with published theoretical data and, after a very careful analysis to rule out experimental errors, conclude that more sophisticated theoretical models are required for the response of molecular entities in DEP fields. The developed experimental platform, which includes arrays of sawtooth metal electrode pairs with varying gaps and produces variations of the electric field gradient, provides a versatile tool that can broaden the utilization of DEP for molecular entities.

9.
Chem Rev ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36719985

RESUMO

Electromagnetic forces and torques enable many key technologies, including optical tweezers or dielectrophoresis. Interestingly, both techniques rely on the same physical process: the interaction of an oscillating electric field with a particle of matter. This work provides a unified framework to understand this interaction both when considering fields oscillating at low frequencies─dielectrophoresis─and high frequencies─optical tweezers. We draw useful parallels between these two techniques, discuss the different and often unstated assumptions they are based upon, and illustrate key applications in the fields of physical and analytical chemistry, biosensing, and colloidal science.

10.
Opt Express ; 30(18): 32215-32229, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242288

RESUMO

We look beyond the standard time-average approach and investigate optical forces in the time domain. The formalism is developed for both the Abraham and Minkowski momenta, which appear to converge in the time domain. We unveil an extremely rich - and by far unexplored - physics associated with the dynamics of the optical forces, which can even attain negative values over short time intervals or produce low frequency dynamics that can excite mechanical oscillations in macroscopic objects under polychromatic illumination. The magnitude of this beating force is tightly linked to the average one. Implications of this work for transient optomechanics are discussed.

11.
Appl Opt ; 61(27): 8100-8107, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36255932

RESUMO

The optical characterization of metasurfaces and nanostructures that alter the polarization of light is tricky and can lead to unphysical results, such as reflectance beyond unity. We track the origin of such pitfalls to the response of some typical optical components used in a commercial microscope or a custom-made setup. In particular, the beam splitter and some mirrors have different responses for both polarizations and can produce wrong results. A simple procedure is described to correct these erroneous results, based on the optical characterization of the different components in the optical setup. With this procedure, the experimental results match the numerical simulations perfectly. The methodology described here is simple and will enable the accurate spectral measurements of nanostructures and metasurfaces that alter the polarization of the incoming light.

12.
ACS Photonics ; 9(7): 2438-2447, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35880076

RESUMO

Optical metasurfaces rely on subwavelength scale nanostructures, which puts significant constraints on nanofabrication accuracies. These constraints are becoming increasingly important, as metasurfaces are maturing toward real applications that require the fabrication of very large area samples. Here, we focus on beam steering gradient metasurfaces and show that perfect nanofabrication does not necessarily equate with best performances: metasurfaces with missing elements can actually be more efficient than intact metasurfaces. Both plasmonic metasurfaces in reflection and dielectric metasurfaces in transmission are investigated. These findings are substantiated by experiments on purposely misfabricated metasurfaces and full-wave calculations. A very efficient quasi-analytical model is also introduced for the design and simulations of metasurfaces; it agrees very well with full-wave calculations. Our findings indicate that the substrate properties play a key role in the robustness of a metasurface and the smoothness of the approximated phase gradient controls the device efficiency.

13.
Adv Mater ; 34(17): e2108225, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35167722

RESUMO

The material and exact shape of a nanostructure determine its optical response, which is especially strong for plasmonic metals. Unfortunately, only a few plasmonic metals are available, which limits the spectral range where these strong optical effects can be utilized. Alloying different plasmonic metals can overcome this limitation, at the expense of using a high-temperature alloying process, which adversely destroys the nanostructure shape. Here, a low-temperature alloying process is developed where the sample is heated at only 300 °C for 8 h followed by 30 min at 450 °C and Au-Ag nanostructures with a broad diversity of shapes, aspect ratios, and stoichiometries are fabricated. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy analyses confirm the homogeneous alloying through the entire sample. Varying the alloy stoichiometry tunes the optical response and controls spectral features, such as Fano resonances. Binary metasurfaces that combine nanostructures with different stoichiometries are fabricated using multiple-step electron-beam lithography, and their optical function as a hologram or a Fresnel zone plate is demonstrated at the visible wavelength of λ = 532 nm. This low-temperature annealing technique provides a versatile and cost-effective way of fabricating complex Au-Ag nanostructures with arbitrary stoichiometry.

14.
Opt Express ; 29(15): 24056-24067, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34614658

RESUMO

We perform a systematic study showing the evolution of the multipoles along with the spectra for a hybrid metal-dielectric nanoantenna, a Si cylinder and an Ag disk stacked one on top of another, as its dimensions are varied one by one. We broaden our analysis to demonstrate the "magnetic light" at energies above 1 eV by varying the height of the Ag on the Si cylinder and below 1 eV by introducing insulating spacing between them. We also explore the appearance of the anapole state along with some exceptionally narrow spectral features by varying the radius of the Ag disk.

15.
Opt Express ; 29(8): 11635-11644, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33984940

RESUMO

In this work, we use finite elements simulations to study the far field properties of two plasmonic structures, namely a dipole antenna and a cylinder dimer, connected to a pair of nanorods. We show that electrical, rather than near field, coupling between the modes of these structures results in a characteristic Fano lineshape in the far field spectra. This insight provides a way of tailoring the far field properties of such systems to fit specific applications, especially maintaining the optical properties of plasmonic antennas once they are connected to nanoelectrodes. This work extends the previous understanding of Fano resonances as generated by a simple near field coupling and provides a route to an efficient design of functional plasmonic electrodes.

16.
J Chem Phys ; 154(7): 074701, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33607882

RESUMO

Avalanche multiphoton photoluminescence (AMPL) is observed from coupled Au-Al nanoantennas under intense laser pumping, which shows more than one order of magnitude emission intensity enhancement and distinct spectral features compared with ordinary metallic photoluminescence. The experiments are conducted by altering the incident laser intensity and polarization using a home-built scanning confocal optical microscope. The results show that AMPL originates from the recombination of avalanche hot carriers that are seeded by multiphoton ionization. Notably, at the excitation stage, multiphoton ionization is shown to be assisted by the local electromagnetic field enhancement produced by coupled plasmonic modes. At the emission step, the giant AMPL intensity can be evaluated as a function of the local field environment and the thermal factor for hot carriers, in accordance with a linear relationship between the power law exponent coefficient and the emitted photon energy. The dramatic change in the spectral profile is explained by spectral linewidth broadening mechanisms. This study offers nanospectroscopic evidence of both the potential optical damages for plasmonic nanostructures and the underlying physical nature of light-matter interactions under a strong laser field; it illustrates the significance of the emerging topics of plasmonic-enhanced spectroscopy and laser-induced breakdown spectroscopy.

17.
Nano Lett ; 20(12): 8752-8759, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33206533

RESUMO

Hybrid metal-dielectric nanostructures have recently gained prominence because they combine strong field enhancement of plasmonic metals and the several low-loss radiation channels of dielectric resonators, which are qualities pertaining to the best of both worlds. In this work, an array of such hybrid nanoantennas is successfully fabricated over a large area and utilized for bulk refractive index sensing with a sensitivity of 208 nm/RIU. Each nanoantenna combines a Si cylinder with an Al disk, separated by a SiO2 spacer. Its optical response is analyzed in detail using the multipoles supported by its subparts and their mutual coupling. The nanoantenna is further modified experimentally with an undercut in the SiO2 region to increase the interaction of the electric field with the background medium, which augments the sensitivity to 245 nm/RIU. A detailed multipole analysis of the hybrid nanoantenna supports our experimental findings.

18.
Opt Express ; 28(19): 27547-27560, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32988046

RESUMO

We analyze the superposition of Cartesian multipoles to reveal the mechanisms underlying the origin of optical forces. We show that a multipolar decomposition approach significantly simplifies the analysis of this problem and leads to a very intuitive explanation of optical forces based on the interference between multipoles. We provide an in-depth analysis of the radiation coming from the object, starting from low-order multipole interactions up to quadrupolar terms. Interestingly, by varying the phase difference between multipoles, the optical force as well as the total radiation directivity can be well controlled. The theory developed in this paper may also serve as a reference for ultra-directional light steering applications.

19.
Opt Lett ; 45(10): 2922-2925, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32412502

RESUMO

In this Letter, we demonstrate how harmonic oscillator equations can be integrated in a neural network to improve the spectral response prediction for an optical system. We use the optical properties of a one-dimensional nanoslit array for a practical implementation of the study. This method allows to build more generalizable relations between the input parameters of the array and its optical properties, showing a 20-fold improvement for parameters outside the range used for the training. We also show how this model generates the output spectrum from phenomenological relationships between the input parameters and the output spectrum, indicating how it grasps the physical mechanisms of the optical response of the structure.

20.
Opt Express ; 27(26): 38670-38682, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878630

RESUMO

Plasmonic antennas improve the stiffness and resolution of optical tweezers by producing a strong near-field. When the antenna traps metallic objects, the optically-resonant object affects the near-field trap, and this interaction should be examined to estimate the optical force accurately. We study this effect in detail by evaluating the force using both Maxwell's stress tensor and the dipole approximation. In spite of the strong optical interaction between the particle and the antenna, the results show that the dipole approximation remains accurate for calculating forces on Rayleigh particles. For particles whose sizes exceed the dipole limit, we observe different coupling regimes where the force becomes either attractive or repulsive. The distributions of field amplitudes and polarization charges explain such a behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA