Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Sustain Chem Eng ; 11(27): 9979-9988, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37448723

RESUMO

This work demonstrates for the first-time biobased, temperature-responsive diblock copolymer nanoparticles synthesized by reversible addition-fragmentation chain-transfer (RAFT) aqueous emulsion polymerization-induced self-assembly (PISA). Here, monomers derived from green solvents of the lactic acid portfolio, N,N-dimethyl lactamide acrylate (DMLA) and ethyl lactate acrylate (ELA), were used. First, DMLA was polymerized by RAFT aqueous solution polymerization to produce a hydrophilic PDMLA macromolecular chain transfer agent (macro-CTA), which was chain extended with ELA in water to form amphiphilic PDMLA-b-PELA diblock copolymer nanoparticles by RAFT aqueous emulsion polymerization. PDMLAx homopolymers were synthesized targeting degrees of polymerization, DPx from 25 to 400, with relatively narrow molecular weight dispersities (D < 1.30). The PDMLA64-b-PELAy diblock copolymers (DPy = 10-400) achieved dispersities, D, between 1.18 and 1.54 with two distinct glass transition temperatures (Tg) identified by differential scanning calorimetry (DSC). Tg(1) (7.4 to 15.7 °C) representative of PELA and Tg(2) (69.1 to 79.7 °C) of PDMLA. Dynamic light scattering (DLS) studies gave particle z-average diameters between 11 and 74 nm (PDI = 0.04 to 0.20). Atomic force microscopy (AFM) showed evidence of spherical particles when dispersions were dried at ∼5 °C and film formation when dried at room temperature. Many of these polymers exhibited a reversible lower critical solution temperature (LCST) in water with a concomitant increase in z-average diameter for the PDMLA-b-PELA diblock copolymer nanoparticles.

2.
Disabil Rehabil ; 41(3): 348-356, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29065718

RESUMO

BACKGROUND: This study reviewed the current state of maxillofacial rehabilitation in resource-limited nations. METHOD: A rigorous literature review was undertaken using several technical and clinical databases using a variety of key words pertinent to maxillofacial prosthetic rehabilitation and resource-limited areas. In addition, interviews were conducted with researchers, clinicians and prosthetists that had direct experience of volunteering or working in resource-limited countries. RESULTS: Results from the review and interviews suggest rehabilitating patients in resource-limited countries remains challenging and efforts to improve the situation requires a multifactorial approach. CONCLUSIONS: In conclusion, public health awareness programmes to reduce the causation of injuries and bespoke maxillofacial prosthetics training programmes to suit these countries, as opposed to attempting to replicate Western training programmes. It is also possible that usage of locally sourced and cheaper materials and the use of low-cost technologies could greatly improve maxillofacial rehabilitation efforts in these localities. Implications for Rehabilitation More information and support needs to be provided to maxillofacial defect/injuries patients and to their families or guardians in a culturally sensitive manner by governments. The health needs, economic and psychological needs of the patients need to be taken into account during the rehabilitation process by clinicians and healthcare organizations. The possibility of developing training programs to suit these resource limited countries and not necessarily follow conventional fabrication methods must be looked into further by educational entities.


Assuntos
Implante de Prótese Maxilofacial/reabilitação , Prótese Maxilofacial , Países em Desenvolvimento , Alocação de Recursos para a Atenção à Saúde , Humanos , Prótese Maxilofacial/economia , Prótese Maxilofacial/psicologia
3.
Materials (Basel) ; 11(6)2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29848959

RESUMO

The objective of this study was to determine the effect of plant based antimicrobial solutions specifically tea tree and Manuka oil on facial silicone elastomers. The purpose of this in vitro study was to evaluate the effect of disinfection with plant extract solution on mechanical properties and morphology on the silicone elastomer. Test specimens were subjected to disinfection using tea tree oil, Manuka oil and the staphylococcus epidermidis bacteria. Furthermore, a procedure duration was used in the disinfection process to simulate up to one year of usage. Over 500 test specimens were fabricated for all tests performed namely hardness, elongation, tensile, tear strength tests, visual inspection and lastly surface characterization using SEM. A repeated measures ANOVA revealed that hardness and elongation at break varied significantly over the time period, whereas this was not observed in the tear and tensile strength parameters of the test samples.

4.
J R Soc Interface ; 15(141)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29669892

RESUMO

Iridescence is an optical phenomenon whereby colour changes with the illumination and viewing angle. It can be produced by thin film interference or diffraction. Iridescent optical structures are fairly common in nature, but relatively little is known about their production or evolution. Here we describe the structures responsible for producing blue-green iridescent colour in Heliconius butterflies. Overall the wing scale structures of iridescent and non-iridescent Heliconius species are very similar, both having longitudinal ridges joined by cross-ribs. However, iridescent scales have ridges composed of layered lamellae, which act as multilayer reflectors. Differences in brightness between species can be explained by the extent of overlap of the lamellae and their curvature as well as the density of ridges on the scale. Heliconius are well known for their Müllerian mimicry. We find that iridescent structural colour is not closely matched between co-mimetic species. Differences appear less pronounced in models of Heliconius vision than models of avian vision, suggesting that they are not driven by selection to avoid heterospecific courtship by co-mimics. Ridge profiles appear to evolve relatively slowly, being similar between closely related taxa, while ridge density evolves faster and is similar between distantly related co-mimics.


Assuntos
Borboletas/ultraestrutura , Iridescência , Asas de Animais/ultraestrutura , Animais , Evolução Biológica , Borboletas/anatomia & histologia , Borboletas/genética , Cor , Genótipo , Microscopia Eletrônica de Varredura , Filogenia , Espalhamento a Baixo Ângulo , Análise Espectral
5.
Langmuir ; 27(17): 11000-7, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21793596

RESUMO

We have investigated a novel method of remotely switching the conformation of a weak polybase brush using an applied voltage. Surface-grafted polyelectrolyte brushes exhibit rich responsive behavior and show great promise as "smart surfaces", but existing switching methods involve physically or chemically changing the solution in contact with the brush. In this study, high grafting density poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes were grown from silicon surfaces using atom transfer radical polymerization. Optical ellipsometry and neutron reflectivity were used to measure changes in the profiles of the brushes in response to DC voltages applied between the brush substrate and a parallel electrode some distance away in the surrounding liquid (water or D(2)O). Positive voltages were shown to cause swelling, while negative voltages in some cases caused deswelling. Neutron reflectometry experiments were carried out on the INTER reflectometer (ISIS, Rutherford Appleton Laboratory, UK) allowing time-resolved measurements of polymer brush structure. The PDMAEMA brushes were shown to have a polymer volume fraction profile described by a Gaussian-terminated parabola both in the equilibrium and in the partially swollen states. At very high positive voltages (in this study, positive bias means positive voltage to the brush-bearing substrate), the brush chains were shown to be stretched to an extent comparable to their contour length, before being physically removed from the interface. Voltage-induced swelling was shown to exhibit a wider range of brush swelling states in comparison to pH switching, with the additional advantages that the stimulus is remotely controlled and may be fully automated.

6.
ACS Nano ; 5(6): 5124-31, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21561158

RESUMO

Spin coating polymer blend thin films provides a method to produce multiphase functional layers of high uniformity covering large surface areas. Applications for such layers include photovoltaics and light-emitting diodes where performance relies upon the nanoscale phase separation morphology of the spun film. Furthermore, at micrometer scales, phase separation provides a route to produce self-organized structures for templating applications. Understanding the factors that determine the final phase-separated morphology in these systems is consequently an important goal. However, it has to date proved problematic to fully test theoretical models for phase separation during spin coating, due to the high spin speeds, which has limited the spatial resolution of experimental data obtained during the coating process. Without this fundamental understanding, production of optimized micro- and nanoscale structures is hampered. Here, we have employed synchronized stroboscopic illumination together with the high light gathering sensitivity of an electron-multiplying charge-coupled device camera to optically observe structure evolution in such blends during spin coating. Furthermore the use of monochromatic illumination has allowed interference reconstruction of three-dimensional topographies of the spin-coated film as it dries and phase separates with nanometer precision. We have used this new method to directly observe the phase separation process during spinning for a polymer blend (PS-PI) for the first time, providing new insights into the spin-coating process and opening up a route to understand and control phase separation structures.


Assuntos
Nanotecnologia/métodos , Polímeros/química , Análise de Fourier , Luz , Teste de Materiais , Membranas Artificiais , Microscopia de Força Atômica/métodos , Nanoestruturas/química , Solventes/química , Propriedades de Superfície
7.
Soft Matter ; 2(12): 1076-1080, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32680210

RESUMO

We have used neutron reflectometry to characterize the swelling behaviour of brushes of poly[2-(diethyl amino)ethyl methacrylate], a polybase, as a function of pH. The brushes, synthesized by the "" method of atom transfer radical polymerization, were observed to approximately double their thickness in low pH solutions, although the p is shifted to a lower pH than in dilute solution. The composition-depth profile obtained from the reflectometry experiments for the swollen brushes reveals a region depleted in polymer between the substrate and the extended part of the brush.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA