Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ann N Y Acad Sci ; 1520(1): 74-88, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36573759

RESUMO

Neisseria gonorrhoeae is an urgent public health threat due to the emergence of antibiotic resistance. As most isolates in the United States are susceptible to at least one antibiotic, rapid molecular antimicrobial susceptibility tests (ASTs) would offer the opportunity to tailor antibiotic therapy, thereby expanding treatment options. With genome sequence and antibiotic resistance phenotype data for nearly 20,000 clinical N. gonorrhoeae isolates now available, there is an opportunity to use statistical methods to develop sequence-based diagnostics that predict antibiotic susceptibility from genotype. N. gonorrhoeae, therefore, provides a useful example illustrating how to apply machine learning models to aid in the design of sequence-based ASTs. We present an overview of this framework, which begins with establishing the assay technology, the performance criteria, the population in which the diagnostic will be used, and the clinical goals, and extends to the choices that must be made to arrive at a set of features with the desired properties for predicting susceptibility phenotype from genotype. While we focus on the example of N. gonorrhoeae, the framework generalizes to other organisms for which large-scale genotype and antibiotic resistance data can be combined to aid in diagnostics development.


Assuntos
Gonorreia , Neisseria gonorrhoeae , Estados Unidos , Humanos , Neisseria gonorrhoeae/genética , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Gonorreia/tratamento farmacológico
2.
Science ; 376(6588): eabl3533, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35357935

RESUMO

Compared to its predecessors, the Telomere-to-Telomere CHM13 genome adds nearly 200 million base pairs of sequence, corrects thousands of structural errors, and unlocks the most complex regions of the human genome for clinical and functional study. We show how this reference universally improves read mapping and variant calling for 3202 and 17 globally diverse samples sequenced with short and long reads, respectively. We identify hundreds of thousands of variants per sample in previously unresolved regions, showcasing the promise of the T2T-CHM13 reference for evolutionary and biomedical discovery. Simultaneously, this reference eliminates tens of thousands of spurious variants per sample, including reduction of false positives in 269 medically relevant genes by up to a factor of 12. Because of these improvements in variant discovery coupled with population and functional genomic resources, T2T-CHM13 is positioned to replace GRCh38 as the prevailing reference for human genetics.


Assuntos
Variação Genética , Genoma Humano , Genômica/normas , Análise de Sequência de DNA/normas , Humanos , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA