Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 170: 105443, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34365123

RESUMO

Animals can respond to human impacts by favouring different morphological traits or by exploiting different food resources. We quantified the morphology and diet of four functionally different fish species (n = 543 fish) from 13 estuaries with varying degrees of human modification in Queensland, Australia. We found differences in the responses of trophic groups to the environmental conditions of estuaries; principally the extent of seagrass in the estuary, and the amount of shoreline and catchment urbanisation. Here, seagrass and urbanisation extent correlated with the diet and morphology of zooplanktivores and detritivores; thereby indicating that human modifications may modify these species functional roles. Conversely, environmental variables did not correlate with the diet or morphology of zoobenthivores or piscivores thereby indicating that human modifications may have less an effect on these species functional roles. Our findings demonstrate that anthropogenic impacts to coastal ecosystems might extend from the traditionally measured metrics of abundance and diversity.


Assuntos
Ecossistema , Estuários , Animais , Austrália , Monitoramento Ambiental , Peixes , Humanos , Urbanização
2.
Mar Pollut Bull ; 159: 111487, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32892921

RESUMO

Human activities in coastal catchments can cause the accumulation of pollutants in seafood. We quantified the concentration of heavy metals, pesticides and PFASs in the flesh of the fisheries species yellowfin bream Acanthopagrus australis (n = 57) and mud crab Scylla serrata (n = 65) from 13 estuaries in southeast Queensland, Australia; a region with a variety of human land uses. Pollutants in yellowfin bream were best explained by the extent of intensive uses in the catchment. Pollutants in mud crabs were best explained by the extent of irrigated agriculture and water bodies. No samples contained detectable levels of pesticides, and only six samples contained low levels of PFASs. Metals were common in fish and crab flesh, but only mercury in yellowfin bream from the Mooloolah River breached Australian food safety standards. High pollutant presence and concentration is not the norm in seafood collected during routine surveys, even in estuaries with highly modified catchments.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água/análise , Animais , Austrália , Monitoramento Ambiental , Pesqueiros , Humanos , Queensland , Urbanização
3.
J Anim Ecol ; 89(3): 784-794, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31758695

RESUMO

Ecosystem functioning is positively linked to biodiversity on land and in the sea. In high-diversity systems (e.g. coral reefs), species coexist by sharing resources and providing similar functions at different temporal or spatial scales. How species combine to deliver the ecological function they provide is pivotal for maintaining the structure, functioning and resilience of some ecosystems, but the significance of this is rarely examined in low-diversity systems such as estuaries. We tested whether an ecological function is shaped by biodiversity in a low-diversity ecosystem by measuring the consumption of carrion by estuarine scavengers. Carrion (e.g. decaying animal flesh) is opportunistically fed on by a large number of species across numerous ecosystems. Estuaries were chosen as the model system because carrion consumption is a pivotal ecological function in coastal seascapes, and estuaries are thought to support diverse scavenger assemblages, which are modified by changes in water quality and the urbanization of estuarine shorelines. We used baited underwater video arrays to record scavengers and measure the rate at which carrion was consumed by fish in 39 estuaries across 1,000 km of coastline in eastern Australia. Carrion consumption was positively correlated with the abundance of only one species, yellowfin bream Acanthopagrus australis, which consumed 58% of all deployed carrion. The consumption of carrion by yellowfin bream was greatest in urban estuaries with moderately hardened shorelines (20%-60%) and relatively large subtidal rock bars (>0.1 km2 ). Our findings demonstrate that an ecological function can be maintained across estuarine seascapes despite both limited redundancy (i.e. dominated by one species) and complementarity (i.e. there is no spatial context where the function is delivered significantly when yellowfin bream are not present) in the functional traits of animal assemblages. The continued functioning of estuaries, and other low-diversity ecosystems, might therefore not be tightly linked to biodiversity, and we suggest that the preservation of functionally dominant species that maintain functions in these systems could help to improve conservation outcomes for coastal seascapes.


Assuntos
Ecossistema , Estuários , Animais , Austrália , Biodiversidade , Recifes de Corais , Peixes
4.
J Anim Ecol ; 85(2): 437-44, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26476209

RESUMO

Connectivity is a pivotal feature of landscapes that affects the structure of populations and the functioning of ecosystems. It is also a key consideration in conservation planning. But the potential functional effects of landscape connectivity are rarely evaluated in a conservation context. The removal of algae by herbivorous fish is a key ecological function on coral reefs that promotes coral growth and recruitment. Many reef herbivores are harvested and some use other habitats (like mangroves) as nurseries or feeding areas. Thus, the effects of habitat connectivity and marine reserves can jointly promote herbivore populations on coral reefs, thereby influencing reef health. We used a coral reef seascape in eastern Australia to test whether seascape connectivity and reserves influence herbivory. We measured herbivore abundance and rates of herbivory (on turf algae and macroalgae) on reefs that differed in both their level of connectivity to adjacent mangrove habitats and their level of protection from fishing. Reserves enhanced the biomass of herbivorous fish on coral reefs in all seascape settings and promoted consumption of turf algae. Consumption of turf algae was correlated with the biomass of surgeonfish that are exploited outside reserves. By contrast, both reserve status and connectivity influenced herbivory on macroalgae. Consumption of macroalgae was greatest on fished reefs that were far from mangroves and was not strongly correlated with any fish species. Our findings demonstrate that landscape connectivity and reserve status can jointly affect the functioning of ecosystems. Moreover, we show that reserve and connectivity effects can differ markedly depending on resource type (in this case turf algae vs. macroalgae). The effectiveness of conservation initiatives will therefore depend on our ability to understand how these multiple interactive effects structure the distribution of ecological functions. These findings have wider implications for the spatial conservation of heterogeneous environments and strengthen the case that the impact of conservation on ecosystem functioning is contingent on how reserves are positioned in landscapes.


Assuntos
Conservação dos Recursos Naturais , Recifes de Corais , Peixes/fisiologia , Herbivoria , Animais , Antozoários , Cadeia Alimentar , Microalgas/crescimento & desenvolvimento , Queensland , Alga Marinha/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA