Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rep Pract Oncol Radiother ; 26(1): 73-85, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33948305

RESUMO

BACKGROUND: The purpose of this study was to assess dose accuracy improvement and dosimetric impact of switching from the anisotropic analytical algorithm (AA) to the Acuros XB algorithm (AXB) when performing an accurate beam calibration in head and neck (H&N) FFF-VMAT treatments. MATERIALS AND METHODS: Twenty H&N cancer patients treated with FFF-VMAT techniques were included. Calculations were performed with the AA and AXB algorithm (dose-to-water - AXBw- and dose-to-medium - AXBm-). An accurate beam calibration was used for AXB calculations. Dose prescription to the tumour (PTV70) and at-risk-nodal region (PTV58.1) were 70 Gy and 58.1 Gy, respectively. A PTV70_bone including bony structures in PTV70 was contoured. Dose-volume parameters were compared between the algorithms. Statistical tests were used to analyze the differences in mean values and the correlation between compliance with the D95 > 95% requirement and occurrence of local recurrence. RESULTS: AA systematically overestimated the dose compared to AXB algorithm with mean dose differences within 1.3 Gy/2%, except for the PTV70_bone (2.2 Gy/3.2%). Dose differences were significantly higher for AXBm calculations when including accurate beam calibration (maximum dose differences up to 2.8 Gy/4.1% and 4.2 Gy/6.3% for PTV70 and PTV70_bone, respectively). 80% of AA-calculated plans did not meet the D95 > 95% requirement after recalculation with AXBm and accurate beam calibration. The reduction in D95 coverage in the tumour was not clinically relevant. CONCLUSIONS: Using the AXBm algorithm and carefully reviewing the beam calibration procedure in H&N FFF-VMAT treatments ensures (1) dose accuracy increase by approximately 3%; (2) a consequent dose increase in targets; and (3) a dose reporting mode that is consistent with the trend of current algorithms.

2.
Phys Med ; 77: 176-180, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32871458

RESUMO

PURPOSE: To examine whether it is essential to apply correction factors for ion recombination (kS) to percentage depth dose (PDD) measurements and to the volume-averaging effect (kvol) to ensure accurate absolute dose calibration for flattening filter-free (FFF) beams for the most commonly used ionization chambers. METHODS: We surveyed medical physicists worldwide (n = 159) to identify the five most common ionization chamber combinations used for absolute and relative reference dosimetry of FFF beams. We then assessed the overall absolute dose calibration error for FFF beams of the Artiste Siemens and TrueBeam Varian linear accelerators resulting from failing to apply correction factors kS in the PDD(10) and the volume-averaging effect (kvol) to such chamber combinations. RESULTS: All the chamber combinations examined-the Farmer PTW 30013 ionization chamber used for absolute dosimetry, and the PTW 31010, PTW 30013, IBA CC04, IBA CC13, and PTW 31021 ionization chambers used for PDD curves measurements-showed non-negligible errors (≥0.5%). The largest error (1.6%) was found for the combination of the Farmer PTW 30013 chamber with the IBA CC13 chamber, which was the most widely used chamber combination in our survey. CONCLUSIONS: Based on our findings, we strongly recommend assessing the impact of failing to apply correction factors kS in the PDD(10) and kvol prior to using any chamber type for FFF beam reference dosimetry purposes.


Assuntos
Fótons , Radiometria , Calibragem , Aceleradores de Partículas
3.
Phys Med ; 67: 176-184, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31734555

RESUMO

PURPOSE: To investigate ion recombination correction and polarity effects in four ion chamber models in flattening-filter-free (FFF) beams to (1) evaluate their suitability for reference dosimetry; (2) assess the accuracy of the two-voltage technique (TVA) against the Bruggmoser formalism; and (3) examine the influence of the accelerator type on the recombination correction. METHODS: Jaffé plots were created for a variety of microchambers, small-volume and Farmer-type chambers to obtain kS, the recombination correction factor, using two different types of accelerators. These values were plotted against dose-per-pulse and Jaffé plots for opposite polarities were created to determine which chambers meet the AAPM TG-51 addendum recombination and polarity specifications. RESULTS: Nearly all small-volume chambers exhibited reference-class behavior with respect to ion recombination and polarity effects. The microchambers exhibited anomalous recombination and polarity effects, precluding their use for reference dosimetry in FFF beams. For the reference-class chambers, agreement between TVA-determined kS values and Jaffé and Bruggmoser formalisms-determined kS values was within 0.1%. No significant differences were found between the kS values obtained with the two different accelerators used in this work. CONCLUSIONS: This study stresses the need to characterize ion recombination correction and polarity effects for small-volume chambers and microchambers on an individual chamber basis and with the more rigorous criteria of the AAPM TG-51 addendum. Furthermore, the study demonstrated the suitability of the TVA method for chambers that exhibit reference-class behavior in FFF beams. Finally, this work has shown that the recombination correction does not depend on the type of accelerator but on its dose-per-pulse.


Assuntos
Fótons , Radiometria/instrumentação , Aceleradores de Partículas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA