Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(21)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38364269

RESUMO

We present a first-principles investigation of Sn paramagnetic centers in Sn-doped vitreous silica based on calculations of the electron paramagnetic resonance (EPR) parameters. The present investigation provides evidence of an extended analogy between the family of Ge paramagnetic centers in Ge-doped silica and the family of Sn paramagnetic centers in Sn-doped silica for SnO2concentrations below phase separation. We infer, also keeping into account the larger spin-orbit coupling of Sn atoms with respect to Ge atoms, that a peculiar and highly distorted three-fold coordinated Sn center (i.e. the Sn forward-oriented configuration) should give rise to an orthorhombic EPR signal of which we suggest a fingerprint in the EPR spectra recorded by Chiodiniet al(2001Phys. Rev.B64073102). Given its structural analogy with theEα'and Ge(2) centers, we here name it as the 'Sn(2) center'. Moreover, we show that the single trapped electron at a SnO4tetrahedron constitutes a paramagnetic center responsible for the orthorhombic EPR signal reported in Chiodiniet al(1998Phys. Rev.B589615), confuting the early assignment to a distorted variant of the Sn-E' center. We hence relabel the latter orthorhombic EPR signal as the 'Sn(1) center' due to its analogy to the Ge(1) center in Ge-doped silica.

2.
Nat Commun ; 11(1): 3330, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620904

RESUMO

In the context of ionic transport in solids, the variation of a migration barrier height under electric fields is traditionally assumed to be equal to the classical electric work of a point charge that carries the transport charge. However, how reliable is this phenomenological model and how does it fare with respect to Modern Theory of Polarization? In this work, we show that such a classical picture does not hold in general as collective dipole effects may be critical. Such effects are unraveled by an appropriate polarization decomposition and by an expression that we derive, which defines the equivalent polarization-work charge. The equivalent polarization-work charge is not equal neither to the transported charge, nor to the Born effective charge of the migrating atom alone, but it is defined by the total polarization change at the transition state. Our findings are illustrated by oxygen charged defects in MgO and in SiO2.

3.
Sci Rep ; 9(1): 7126, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31073141

RESUMO

Synthetic vitreous silica is currently the preferred material for the production of optical fibres because of the several excellent properties of this glass, e.g. high transmission in the visible and IR domains, high mechanical strength, chemical durability, and ease of doping with various materials. For instance, fiber lasers and amplifiers exploit the light amplification properties provided by rare-earth ions employed as dopants in the core of silica-based optical fibers. The structure and composition of the nearest neighbor shell surrounding rare-earth ions in silica-based optical fibers and amplifiers have been intensively debated in the last decade. To reduce aggregation effects between rare-earth ions, co-dopants such as phosphorus and aluminium are added as structural modifiers; phosphorus-doping, in particular, has proved to be very efficient in dissolving rare-earth ions. In this work, we provide further insights concerning the embedding of P atoms into the silica network, which may be relevant for explaining the ease of formation of a phosphorus pentoxide nearest-neighbor shell around a rare-earth dopant. In particular, by means of first-principles calculations, we discuss alternative models for an irradiation (UV, x-, γ-rays) induced paramagnetic center, i.e. the so called room-temperature phosphorus-oxygen-hole center, and its precursors. We report that the most likely precursor of a room-temperature phosphorus-oxygen-hole center comprises of a micro-cluster of a few (at least two) neighboring phosphate tetrahedra, and correspondingly that the occurrence of isolated [(O-)2P(=O)2]- units is unlikely even at low P-doping concentrations. In fact, this work predicts that the symmetric stretching of P=O bonds in isolated [(O-)2P(=O)2]- units appears as a Raman band at a frequency of ~1110 cm-1, and only by including at least another corner-sharing phosphate tetrahedron, it is shown to shift to higher frequencies (up to ~40 cm-1) due to the shortening of P=O bonds, thereby leading to an improved agreement with the observed Raman band located at ~1145 cm-1.

4.
Nanotechnology ; 28(19): 195202, 2017 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-28345535

RESUMO

In this work we present an extensive investigation of nanoscale physical phenomena related to oxygen-deficient centers (ODCs) in silica and Ge-doped silica by means of first-principles calculations, including nudged-elastic band, electron paramagnetic resonance parameters calculations, and many-body perturbation theory (GW and Bethe-Salpeter equation) techniques. We show that by neutralizing positively charged oxygen monovacancies we can obtain model structures of twofold Si and Ge defects of which the calculated absorption spectra and singlet-to-triplet transitions are in excellent agreement with the experimental optical absorption and photo-luminescence data. In particular we provide an exhaustive analysis of the main exciton peaks related to the presence of twofold defects including long-range correlation effects. By calculating the reaction pathways and energy barriers necessary for the interconversion, we advance a double precursory origin of the [Formula: see text] and Ge(2) centers as due to the ionization of neutral oxygen monovacancies (Si-Si and Ge-Si dimers) and as due to the ionization of twofold Si and Ge defects. Furthermore two distinct structural conversion mechanisms are found to occur between the neutral oxygen monovacancy and the twofold Si (and Ge) atom configurations. Such conversion mechanisms allow to explain the radiation induced generation of the ODC(II) centers, their photobleaching, and also their generation during the drawing of optical fibers.

5.
Phys Chem Chem Phys ; 17(8): 6114-21, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25645058

RESUMO

A unique paradigm for intermolecular charge transport mediated by diffuse atomic-like orbital (SAMOs), typically present in conjugated hollow shaped molecules, is investigated for C20H10 molecular fragments by means of G0W0 theory. Inclusion of many body screening and polarization effects is seen to be important for accurate prediction of electronic properties involving these diffuse orbitals. Theoretical predictions are made for the series of bowl-shaped fullerene fragments, C20H10, C30H10, C40H10, C50H10. Interesting results are found for the LUMO-SAMO energy gap in C20H10, which is shown to be nearly an order of magnitude lower that that determined for C60. Given the ability to support bowl fragments on metal surfaces, these results suggest the concrete possibility for exploiting SAMO-mediated electron transport in supramolecular conducting layers.

6.
J Phys Condens Matter ; 25(33): 335502, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23877003

RESUMO

The electronic and optical properties of neutral oxygen vacancies, also called oxygen deficient centers (ODC(I)s), have been investigated in pure and germanium doped silica (both amorphous and α-quartz) through first-principles calculations. By means of density functional theory and many-body perturbation theory (GW approximation and the solution of the Bethe-Salpeter equation), we obtain the atomic and electronic structures as well as the optical absorption spectra of pure and Ge-doped silica in the presence of ODCs (SiODC(I)s and GeODC(I)s); our study allows us to interpret and explain the very nature of the optical features in experimental absorption spectra. The theoretical optical absorption signatures of these defects show excellent agreement with experiments for the SiODC(I)s, i.e. two absorption bands arise around 7.6 eV due to transitions between the defect levels. Our theoretical results also explain the experimental difficulty in measuring the GeODC(I) absorption band in Ge-doped silica, which was in fact tentatively assigned to a broad and very weak absorption signature, located between 7.5 and 8.5 eV. The influence of Ge-doping induced disorder on the nature of the defect-related optical transitions is discussed. We find that even if the atomic and electronic structures of SiODC(I) and GeODC(I) defects are relatively similar, the slight network distortion induced by the presence of the Ge atom, together with the increase in the Ge-Si bond asymmetry, completely changes the nature of the optical absorption edge.

7.
Phys Rev Lett ; 104(7): 075502, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20366896

RESUMO

The long-standing problem of the oxygen self-diffusion mechanism in silicon dioxide, a prototypical oxide, both in the crystalline and in the amorphous phase, is studied from first principles. We demonstrate that the widely used local-density approximation to density functional theory (DFT) predicts a kinetic behavior of oxygen in strong disagreement with available experiments. Applying a recently developed scheme that combines DFT with quasiparticle energy calculations in the G0W0 approximation considerably improves defect energetics and gives gratifying agreement with experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA