Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Cancer ; 137(8): 1842-54, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25868708

RESUMO

Tenascin-W is a matricellular protein with a dynamically changing expression pattern in development and disease. In adults, tenascin-W is mostly restricted to stem cell niches, and is also expressed in the stroma of solid cancers. Here, we analyzed its expression in the bone microenvironment of breast cancer metastasis. Osteoblasts were isolated from tumor-free or tumor-bearing bones of mice injected with MDA-MB231-1833 breast cancer cells. We found a fourfold upregulation of tenascin-W in the osteoblast population of tumor-bearing mice compared to healthy mice, indicating that tenascin-W is supplied by the bone metastatic niche. Transwell and co-culture studies showed that human bone marrow stromal cells (BMSCs) express tenascin-W protein after exposure to factors secreted by MDA-MB231-1833 breast cancer cells. To study tenascin-W gene regulation, we identified and analyzed the tenascin-W promoter as well as three evolutionary conserved regions in the first intron. 5'RACE analysis of mRNA from human breast cancer, glioblastoma and bone tissue showed a single tenascin-W transcript with a transcription start site at a noncoding first exon followed by exon 2 containing the ATG translation start. Site-directed mutagenesis of a SMAD4-binding element in proximity of the TATA box strongly impaired promoter activity. TGFß1 induced tenascin-W expression in human BMSCs through activation of the TGFß1 receptor ALK5, while glucocorticoids were inhibitory. Our experiments show that tenascin-W acts as a niche component for breast cancer metastasis to bone by supporting cell migration and cell proliferation of the cancer cells.


Assuntos
Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Osteoblastos/metabolismo , Tenascina/genética , Fator de Crescimento Transformador beta/metabolismo , Animais , Células da Medula Óssea/citologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Feminino , Humanos , Camundongos , Transplante de Neoplasias , Osteoblastos/patologia , Transdução de Sinais , Células Estromais/citologia , Células Estromais/metabolismo , Tenascina/metabolismo , Microambiente Tumoral , Regulação para Cima
2.
BMC Clin Pathol ; 12: 14, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22947174

RESUMO

BACKGROUND: Tenascins are large glycoproteins found in the extracellular matrix of many embryonic and adult tissues. Tenascin-C is a well-studied biomarker known for its high overexpression in the stroma of most solid cancers. Tenascin-W, the least studied member of the family, is highly expressed in the stroma of colon and breast tumors and in gliomas, but not in the corresponding normal tissues. Other solid tumors have not been analyzed. The present study was undertaken to determine whether tenascin-W could serve as a cancer-specific extracellular matrix protein in a broad range of solid tumors. METHODS: We analyzed the expression of tenascin-W and tenascin-C by immunoblotting and by immunohistochemistry on multiple frozen tissue microarrays of carcinomas of the pancreas, kidney and lung as well as melanomas and compared them to healthy tissues. RESULTS: From all healthy adult organs tested, only liver and spleen showed detectable levels of tenascin-W, suggesting that tenascin-W is absent from most human adult organs under normal, non-pathological conditions. In contrast, tenascin-W was detectable in the majority of melanomas and their metastases, as well as in pancreas, kidney, and lung carcinomas. Comparing lung tumor samples and matching control tissues for each patient revealed a clear overexpression of tenascin-W in tumor tissues. Although the number of samples examined is too small to draw statistically significant conclusions, there seems to be a tendency for increased tenascin-W expression in higher grade tumors. Interestingly, in most tumor types, tenascin-W is also expressed in close proximity to blood vessels, as shown by CD31 co-staining of the samples. CONCLUSIONS: The present study extends the tumor biomarker potential of tenascin-W to a broad range of solid tumors and shows its accessibility from the blood stream for potential therapeutic strategies.

3.
Int J Biol Sci ; 8(2): 187-94, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22211116

RESUMO

Tenascins are extracellular matrix glycoproteins associated with cell motility, proliferation and differentiation. Tenascin-C inhibits cell spreading by binding to fibronectin; tenascin-R and tenascin-X also have anti-adhesive properties in vitro. Here we have studied the adhesion modulating properties of the most recently characterized tenascin, tenascin-W. C2C12 cells, a murine myoblast cell line, will form broad lamellipodia with stress fibers and focal adhesion complexes after culture on fibronectin. In contrast, C2C12 cells cultured on tenascin-W fail to spread and form stress fibers or focal adhesion complexes, and instead acquire a multipolar shape with short, actin-tipped pseudopodia. The same stellate morphology is observed when C2C12 cells are cultured on a mixture of fibronectin and tenascin-W, or on fibronectin in the presence of soluble tenascin-W. Tenascin-W combined with fibronectin also inhibits the spreading of mouse embryo fibroblasts when compared with cells cultured on fibronectin alone. The similarity between the adhesion modulating effects of tenascin-W and tenascin-C in vitro led us to study the possibility of tenascin-W compensating for tenascin-C in tenascin-C knockout mice, especially during epidermal wound healing. Dermal fibroblasts harvested from a tenascin-C knockout mouse express tenascin-W, but dermal fibroblasts taken from a wild type mouse do not. However, there is no upregulation of tenascin-W in the dermis of tenascin-C knockout mice, or in the granulation tissue of skin wounds in tenascin-C knockout animals. Similarly, tenascin-X is not upregulated in early wound granulation tissue in the tenascin-C knockout mice. Thus, tenascin-W is able to inhibit cell spreading in vitro and it is upregulated in dermal fibroblasts taken from the tenascin-C knockout mouse, but neither it nor tenascin-X are likely to compensate for missing tenascin-C during wound healing.


Assuntos
Adesão Celular , Tenascina/fisiologia , Actinas/metabolismo , Actinas/fisiologia , Animais , Técnicas de Cultura de Células , Linhagem Celular , Movimento Celular , Células Cultivadas , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Fibronectinas/fisiologia , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Camundongos , Pseudópodes/fisiologia , Pseudópodes/ultraestrutura , Tenascina/genética , Tenascina/metabolismo , Tenascina/farmacologia , Cicatrização/genética
4.
Matrix Biol ; 30(3): 225-33, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21349332

RESUMO

Tenascin-C is an extracellular matrix protein over-expressed in a large variety of cancers. In the present study, we aimed at identifying new interactors of tenascin-C by purifying secreted proteins on a tenascin-C affinity column. Analysis of eluates by mass spectrometry revealed phosphoglycerate kinase 1, clusterin, fibronectin, SPARC-related modular calcium-binding protein 1 (SMOC1) and nidogen-2 as potential interactors of tenascin-C. The interaction between tenascin-C and SMOC1 was confirmed by co-immunoprecipitation and further analyzed by Surface Plasmon Resonance Spectroscopy, which revealed an apparent dissociation constant (K(D)) value of 2.59∗10(-9)M. Further analyses showed that this binding is reduced in the presence of EDTA. To investigate whether SMOC1 itself could be over-expressed in the context of tumorigenesis, we analyzed data of two independent RNA profiling studies and found that mRNA levels of SMOC1 are significantly increased in oligodendrogliomas compared to control brain samples. In support of these data, western blot analysis of protein extracts from 12 oligodendrogliomas, 4 astrocytomas and 13 glioblastomas revealed elevated levels compared to healthy brain extract. Interestingly, cell migration experiments revealed that SMOC1 can counteract the chemo-attractive effect of tenascin-C on U87 glioma cells. The present study thus identified SMOC1 as a new cancer-associated protein capable of interacting with tenascin-C in vitro.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Osteonectina/metabolismo , Tenascina/metabolismo , Regulação para Cima , Adulto , Idoso , Neoplasias Encefálicas/patologia , Estudos de Casos e Controles , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Humanos , Imunoprecipitação , Pessoa de Meia-Idade , Ligação Proteica , Ressonância de Plasmônio de Superfície
5.
Int J Biochem Cell Biol ; 42(9): 1412-5, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20541035

RESUMO

Tenascin-W was the last member of a family of four large extracellular matrix glycoproteins to be discovered. The original member of the tenascin family, tenascin-C, has been widely studied due to its association with asthma, fibrosis, infection, inflammation and cancer. Recent studies report multiple common features between tenascin-W and tenascin-C in terms of structure, expression and function, especially in the context of tumorigenesis. Furthermore, specific functions for tenascin-W in osteogenesis have been revealed. This review presents an update on our current knowledge concerning tenascin-W and discusses potential medical applications of this cancer-enriched extracellular matrix protein.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Neoplasias/metabolismo , Osteogênese/fisiologia , Tenascina/metabolismo , Animais , Proteínas da Matriz Extracelular/genética , Humanos , Neoplasias/genética , Osteogênese/genética , Tenascina/química , Tenascina/genética
6.
FASEB J ; 24(3): 778-87, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19884327

RESUMO

The microenvironment hosting a tumor actively participates in regulating tumor cell proliferation, migration, and invasion. Among the extracellular matrix proteins enriched in the stroma of carcinomas are the tenascin family members tenascin-C and tenascin-W. Whereas tenascin-C overexpression in gliomas is known to correlate with poor prognosis, the status of tenascin-W in brain tumors has not been investigated so far. In the present study, we analyzed protein levels of tenascin-W in 38 human gliomas and found expression of tenascin-W in 80% of the tumor samples, whereas no tenascin-W could be detected in control, nontumoral brain tissues. Double immunohistochemical staining of tenascin-W and von Willebrand factor revealed that tenascin-W is localized around blood vessels, exclusively in tumor samples. In vitro, the presence of tenascin-W increased the proportion of elongated human umbilical vein endothelial cells (HUVECs) and augmented the mean speed of cell migration. Furthermore, tenascin-W triggered sprouting of HUVEC spheroids to a similar extent as the proangiogenic factor tenascin-C. In conclusion, our study identifies tenascin-W as a candidate biomarker for brain tumor angiogenesis that could be used as a molecular target for therapy irrespective of the glioma subtype.-Martina, E., Degen, M., Rüegg, C., Merlo, A., Lino, M. M., Chiquet-Ehrismann, R., Brellier, F. Tenascin-W is a specific marker of glioma-associated blood vessels and stimulates angiogenesis in vitro.


Assuntos
Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/farmacologia , Vasos Sanguíneos/metabolismo , Glioma/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Tenascina/metabolismo , Tenascina/farmacologia , Western Blotting , Crescimento Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Imunofluorescência , Humanos , Técnicas In Vitro , Esferoides Celulares/efeitos dos fármacos , Veias Umbilicais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA