Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Semin Immunopathol ; 42(4): 397-412, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32020337

RESUMO

Preterm birth is the leading cause of mortality in children under the age of five worldwide. Despite major efforts, we still lack the ability to accurately predict and effectively prevent preterm birth. While multiple factors contribute to preterm labor, dysregulations of immunological adaptations required for the maintenance of a healthy pregnancy is at its pathophysiological core. Consequently, a precise understanding of these chronologically paced immune adaptations and of the biological pacemakers that synchronize the pregnancy "immune clock" is a critical first step towards identifying deviations that are hallmarks of peterm birth. Here, we will review key elements of the fetal, placental, and maternal pacemakers that program the immune clock of pregnancy. We will then emphasize multiomic studies that enable a more integrated view of pregnancy-related immune adaptations. Such multiomic assessments can strengthen the biological plausibility of immunological findings and increase the power of biological signatures predictive of preterm birth.


Assuntos
Trabalho de Parto Prematuro , Nascimento Prematuro , Criança , Feminino , Feto , Humanos , Recém-Nascido , Trabalho de Parto Prematuro/etiologia , Placenta , Gravidez
2.
PLoS One ; 14(2): e0210675, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30730971

RESUMO

The role of extracellular vesicles (EVs), specifically exosomes, in intercellular communication likely plays a key role in placental orchestration of pregnancy and maternal immune sensing of the fetus. While murine models are powerful tools to study pregnancy and maternal-fetal immune interactions, in contrast to human placental exosomes, the content of murine placental and pregnancy exosomes remains largely understudied. Using a recently developed in vitro culture technique, murine trophoblast stem cells derived from B6 mice were differentiated into syncytial-like cells. EVs from the conditioned media, as well as from pregnant and non-pregnant sera, were enriched for exosomes. The RNA composition of these murine trophoblast-derived and pregnancy-associated exosome-enriched-EVs (ExoE-EVs) was determined using RNA-sequencing analysis and expression levels confirmed by qRT-PCR. Differentially abundant miRNAs were detected in syncytial differentiated ExoE-EVs, particularly from the X chromosome cluster (mmu-miR-322-3p, mmu-miR-322-5p, mmu-miR-503-5p, mmu-miR-542-3p, and mmu-miR-450a-5p). These were confirmed to be increased in pregnant mouse sera ExoE-EVs by qRT-PCR analysis. Interestingly, fifteen miRNAs were only present within the pregnancy-derived ExoE-EVs compared to non-pregnant controls. Mmu-miR-292-3p and mmu-miR-183-5p were noted to be some of the most abundant miRNAs in syncytial ExoE-EVs and were also present at higher levels in pregnant versus non-pregnant sera ExoE-EVs. The bioinformatics tool, MultiMir, was employed to query publicly available databases of predicted miRNA-target interactions. This analysis reveals that the X-chromosome miRNAs are predicted to target ubiquitin-mediated proteolysis and intracellular signaling pathways. Knowing the cargo of placental and pregnancy-specific ExoE-EVs as well as the predicted biological targets informs studies using murine models to examine not only maternal-fetal immune interactions but also the physiologic consequences of placental-maternal communication.


Assuntos
Exoma , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Gravidez/fisiologia , Trofoblastos/metabolismo , Animais , Vesículas Extracelulares/imunologia , Feminino , Camundongos , MicroRNAs/imunologia , Trofoblastos/imunologia
3.
Hypertension ; 73(3): 680-690, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30636549

RESUMO

Identifying modifiable factors that contribute to preeclampsia risk associated with assisted reproduction can improve maternal health. Vascular dysfunction predates clinical presentation of preeclampsia. Therefore, we examined if a nonphysiological hormonal milieu, a modifiable state, affects maternal vascular health in early pregnancy. Blood pressure, endothelial function, circulating endothelial progenitor cell numbers, lipid levels, and corpus luteum (CL) hormones were compared in a prospective cohort of women with infertility history based on number of CL: 0 CL (programmed frozen embryo transfer [FET], N=18); 1 CL (spontaneous conception [N=16] and natural cycle FET [N=12]); or >3 CL associated with in vitro fertilization [N=11]. Women with 0 or >3 CL lacked the drop in mean arterial blood pressure compared with those with 1 CL (both P=0.05). Reactive hyperemia index was impaired in women with 0 CL compared with 1 CL ( P=0.04) while baseline pulse wave amplitude was higher with > 3 CL compared with 1 CL ( P=0.01) or 0 CL ( P=0.01). Comparing only FET cycles, a lower reactive hyperemia index and a higher augmentation index is noted in FETs with suppressed CL compared with FETs in a natural cycle (both P=0.03). The number of angiogenic and nonangiogenic circulating endothelial progenitor cell numbers was lower in the absence of a CL in FETs ( P=0.01 and P=0.03). Vascular health in early pregnancy is altered in women with aberrant numbers of CL (0 or >3) and might represent insufficient cardiovascular adaptation contributing to an increased risk of preeclampsia.


Assuntos
Pressão Sanguínea/fisiologia , Transferência Embrionária/métodos , Endotélio Vascular/fisiopatologia , Saúde Materna , Pré-Eclâmpsia/fisiopatologia , Resistência Vascular/fisiologia , Adulto , Corpo Lúteo , Feminino , Seguimentos , Humanos , Gravidez , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA