Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Mol Gastroenterol Hepatol ; 18(5): 101391, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39179175

RESUMO

BACKGROUND & AIMS: Mast cells (MCs) are typically found at mucosal surfaces, where their immunoglobulin E (IgE)-dependent activation plays a central role in allergic diseases. Over the past years, signaling through Mas-related G protein-coupled receptor b2 (Mrgprb2) in mice and MRGPRX2 in humans has gained a lot of interest as an alternative MC activation pathway with high therapeutic potential. The aim of this study was to explore the relevance of such IgE-independent, Mrgprb2-mediated signaling in colonic MCs in the healthy and acutely inflamed mouse colon. METHODS: Mrgprb2 expression and functionality was studied using a genetic labeling strategy combined with advanced microscopic imaging. Furthermore, Mrgprb2 knockout (Mrgprb2-/-) mice were used to determine the role of this pathway in a preclinical dextran sodium sulphate (DSS) colitis model. RESULTS: We found that Mrgprb2 acts as a novel MC degranulation pathway in a large subset of connective tissue MCs in the mouse distal colon. Acute DSS colitis induced a pronounced increase of Mrgprb2-expressing MCs, which were found in close association with Substance P-positive nerve fibers. Loss of Mrgprb2-mediated signaling impaired DSS-induced neutrophil influx and significantly impacted on acute colitis progression. CONCLUSIONS: Our findings uncover a novel, IgE-independent MC degranulation pathway in the mouse colon that plays a central role in acute colitis pathophysiology, mainly by safeguarding acute colitis progression and severity in mice. This pseudo allergic, Mrgprb2-induced signaling is part of a hitherto unconsidered colonic neuro-immune pathway and might have significant potential for the further development of effective therapeutic treatment strategies for gastrointestinal disorders, such as ulcerative colitis.


Assuntos
Colite , Sulfato de Dextrana , Modelos Animais de Doenças , Mastócitos , Camundongos Knockout , Receptores Acoplados a Proteínas G , Animais , Mastócitos/imunologia , Mastócitos/metabolismo , Mastócitos/patologia , Colite/patologia , Colite/imunologia , Colite/induzido quimicamente , Colite/metabolismo , Camundongos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Sulfato de Dextrana/toxicidade , Degranulação Celular , Transdução de Sinais , Colo/patologia , Colo/imunologia , Colo/metabolismo , Receptores de Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/genética , Doença Aguda , Imunoglobulina E/imunologia , Imunoglobulina E/metabolismo , Camundongos Endogâmicos C57BL
2.
Cell Mol Gastroenterol Hepatol ; 18(1): 89-104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556049

RESUMO

BACKGROUND & AIMS: Mounting evidence suggests the gastrointestinal microbiome is a determinant of peripheral immunity and central neurodegeneration, but the local disease mechanisms remain unknown. Given its potential relevance for early diagnosis and therapeutic intervention, we set out to map the pathogenic changes induced by bacterial amyloids in the gastrointestinal tract and its enteric nervous system. METHODS: To examine the early response, we challenged primary murine myenteric networks with curli, the prototypical bacterial amyloid, and performed shotgun RNA sequencing and multiplex enzyme-linked immunosorbent assay. Using enteric neurosphere-derived glial and neuronal cell cultures, as well as in vivo curli injections into the colon wall, we further scrutinized curli-induced pathogenic pathways. RESULTS: Curli induced a proinflammatory response, with strong up-regulation of Saa3 and the secretion of several cytokines. This proinflammatory state was induced primarily in enteric glia, was accompanied by increased levels of DNA damage and replication, and triggered the influx of immune cells in vivo. The addition of recombinant Serum Amyloid A3 (SAA3) was sufficient to recapitulate this specific proinflammatory phenotype while Saa3 knock-out attenuated curli-induced DNA damage and replication. Similar to curli, recombinant SAA3 caused a strong up-regulation of Saa3 transcripts, illustrating its self-amplifying potential . Since colonization of curli-producing Salmonella and dextran sulfate sodium-induced colitis triggered a significant increase in Saa3 transcripts as well, we assume SAA3plays a central role in enteric dysfunction. Inhibition of dual leucine zipper kinase, an upstream regulator of the c-Jun N-terminal kinase pathway responsible for SAA3 production, attenuated curli- and recombinant SAA3-induced Saa3 up-regulation, DNA damage, and replication in enteric glia. CONCLUSIONS: Our results position SAA3 as an important mediator of gastrointestinal vulnerability to bacterial-derived amyloids and demonstrate the potential of dual leucine zipper kinase inhibition to dampen enteric pathology.


Assuntos
Sistema Nervoso Entérico , Proteína Amiloide A Sérica , Animais , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/patologia , Sistema Nervoso Entérico/imunologia , Proteína Amiloide A Sérica/metabolismo , Proteína Amiloide A Sérica/genética , Camundongos , Proteínas de Bactérias/metabolismo , Inflamação/imunologia , Inflamação/patologia , Inflamação/metabolismo , Neuroglia/metabolismo , Neuroglia/imunologia , Neuroglia/patologia , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Microbioma Gastrointestinal/imunologia , Camundongos Knockout , Colite/imunologia , Colite/microbiologia , Colite/patologia , Neurônios/metabolismo , Neurônios/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA