Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
2.
Cell Rep Med ; 4(12): 101341, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38118419

RESUMO

The gut microbiota contributes to the pathophysiology of non-alcoholic fatty liver disease (NAFLD). Histidine is a key energy source for the microbiota, scavenging it from the host. Its role in NAFLD is poorly known. Plasma metabolomics, liver transcriptomics, and fecal metagenomics were performed in three human cohorts coupled with hepatocyte, rodent, and Drosophila models. Machine learning analyses identified plasma histidine as being strongly inversely associated with steatosis and linked to a hepatic transcriptomic signature involved in insulin signaling, inflammation, and trace amine-associated receptor 1. Circulating histidine was inversely associated with Proteobacteria and positively with bacteria lacking the histidine utilization (Hut) system. Histidine supplementation improved NAFLD in different animal models (diet-induced NAFLD in mouse and flies, ob/ob mouse, and ovariectomized rats) and reduced de novo lipogenesis. Fecal microbiota transplantation (FMT) from low-histidine donors and mono-colonization of germ-free flies with Enterobacter cloacae increased triglyceride accumulation and reduced histidine content. The interplay among microbiota, histidine catabolism, and NAFLD opens therapeutic opportunities.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Obesidade Mórbida , Humanos , Camundongos , Ratos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Histidina/uso terapêutico , Microbioma Gastrointestinal/fisiologia , Dieta Hiperlipídica
3.
Nat Med ; 29(8): 2121-2132, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414899

RESUMO

Fecal microbiota transplantation (FMT) represents a potential strategy to overcome resistance to immune checkpoint inhibitors in patients with refractory melanoma; however, the role of FMT in first-line treatment settings has not been evaluated. We conducted a multicenter phase I trial combining healthy donor FMT with the PD-1 inhibitors nivolumab or pembrolizumab in 20 previously untreated patients with advanced melanoma. The primary end point was safety. No grade 3 adverse events were reported from FMT alone. Five patients (25%) experienced grade 3 immune-related adverse events from combination therapy. Key secondary end points were objective response rate, changes in gut microbiome composition and systemic immune and metabolomics analyses. The objective response rate was 65% (13 of 20), including four (20%) complete responses. Longitudinal microbiome profiling revealed that all patients engrafted strains from their respective donors; however, the acquired similarity between donor and patient microbiomes only increased over time in responders. Responders experienced an enrichment of immunogenic and a loss of deleterious bacteria following FMT. Avatar mouse models confirmed the role of healthy donor feces in increasing anti-PD-1 efficacy. Our results show that FMT from healthy donors is safe in the first-line setting and warrants further investigation in combination with immune checkpoint inhibitors. ClinicalTrials.gov identifier NCT03772899 .


Assuntos
Transplante de Microbiota Fecal , Melanoma , Animais , Camundongos , Transplante de Microbiota Fecal/métodos , Inibidores de Checkpoint Imunológico , Fezes/microbiologia , Melanoma/terapia , Imunoterapia , Resultado do Tratamento
4.
Gut Microbes ; 15(1): 2208501, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37191344

RESUMO

Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease with ursodeoxycholic acid (UDCA) as first-line treatment. Poor response to UDCA is associated with a higher risk of progressing to cirrhosis, but the underlying mechanisms are unclear. UDCA modulates the composition of primary and bacterial-derived bile acids (BAs). We characterized the phenotypic response to UDCA based on BA and bacterial profiles of PBC patients treated with UDCA. Patients from the UK-PBC cohort (n = 419) treated with UDCA for a minimum of 12-months were assessed using the Barcelona dynamic response criteria. BAs from serum, urine, and feces were analyzed using Ultra-High-Performance Liquid Chromatography-Mass Spectrometry and fecal bacterial composition measured using 16S rRNA gene sequencing. We identified 191 non-responders, 212 responders, and a subgroup of responders with persistently elevated liver biomarkers (n = 16). Responders had higher fecal secondary and tertiary BAs than non-responders and lower urinary bile acid abundances, with the exception of 12-dehydrocholic acid, which was higher in responders. The sub-group of responders with poor liver function showed lower alpha-diversity evenness, lower abundance of fecal secondary and tertiary BAs than the other groups and lower levels of phyla with BA-deconjugation capacity (Actinobacteriota/Actinomycetota, Desulfobacterota, Verrucomicrobiota) compared to responders. UDCA dynamic response was associated with an increased capacity to generate oxo-/epimerized secondary BAs. 12-dehydrocholic acid is a potential biomarker of treatment response. Lower alpha-diversity and lower abundance of bacteria with BA deconjugation capacity might be associated with an incomplete response to treatment in some patients.


Assuntos
Microbioma Gastrointestinal , Cirrose Hepática Biliar , Humanos , Ácido Ursodesoxicólico/uso terapêutico , Cirrose Hepática Biliar/tratamento farmacológico , Ácido Desidrocólico/uso terapêutico , RNA Ribossômico 16S/genética , Colagogos e Coleréticos/uso terapêutico , Ácidos e Sais Biliares/uso terapêutico , Biomarcadores , Fenótipo , Bactérias/genética
6.
Aliment Pharmacol Ther ; 56(11-12): 1556-1569, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36250604

RESUMO

BACKGROUND: Factors influencing recurrence risk in primary Clostridioides difficile infection (CDI) are poorly understood, and tools predicting recurrence are lacking. Perturbations in bile acids (BAs) contribute to CDI pathogenesis and may be relevant to primary disease prognosis. AIMS: To define stool BA dynamics in patients with primary CDI and to explore signatures predicting recurrence METHODS: Weekly stool samples were collected from patients with primary CDI from the last day of anti-CDI therapy until recurrence or, otherwise, through 8 weeks post-completion. Ultra-high performance liquid chromatography-mass spectrometry was used to profile BAs. Stool bile salt hydrolase (BSH) activity was measured to determine primary BA bacterial deconjugation capacity. Multivariate and univariate models were used to define differential BA trajectories in patients with recurrence versus those without, and to assess faecal BAs as predictive markers for recurrence. RESULTS: Twenty (36%) of 56 patients (median age: 57, 64% male) had recurrence; 80% of recurrences occurred within the first 9 days post-antibiotic treatment. Principal component analysis of stool BA profiles demonstrated clustering by recurrence status and post-treatment timepoint. Longitudinal faecal BA trajectories showed recovery of secondary BAs and their derivatives only in patients without recurrence. BSH activity increased over time only among non-relapsing patients (ß = 0.056; likelihood ratio test p = 0.018). A joint longitudinal-survival model identified five stool BAs with area under the receiver operating characteristic curve >0.73 for predicting recurrence within 9 days post-CDI treatment. CONCLUSIONS: Gut BA metabolism dynamics differ in primary CDI patients between those developing recurrence and those who do not. Individual BAs show promise as potential novel biomarkers to predict CDI recurrence.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Ácidos e Sais Biliares/análise , Recidiva , Infecções por Clostridium/diagnóstico , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/microbiologia , Fezes/química
7.
Gut Microbes ; 13(1): 1994836, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34763597

RESUMO

Intestinal microbiota plays a key role in shaping host homeostasis by regulating metabolism, immune responses and behavior. Its dysregulation has been associated with metabolic, immune and neuropsychiatric disorders and is accompanied by changes in bacterial metabolic regulation. Although proteomics is well suited for analysis of individual microbes, metaproteomics of fecal samples is challenging due to the physical structure of the sample, presence of contaminating host proteins and coexistence of hundreds of taxa. Furthermore, there is a lack of consensus regarding preparation of fecal samples, as well as downstream bioinformatic analyses following metaproteomics data acquisition. Here we assess sample preparation and data analysis strategies applied to mouse feces in a typical mass spectrometry-based metaproteomic experiment. We show that subtle changes in sample preparation protocols may influence interpretation of biological findings. Two-step database search strategies led to significant underestimation of false positive protein identifications. Unipept software provided the highest sensitivity and specificity in taxonomic annotation of the identified peptides of unknown origin. Comparison of matching metaproteome and metagenome data revealed a positive correlation between protein and gene abundances. Notably, nearly all functional categories of detected protein groups were differentially abundant in the metaproteome compared to what would be expected from the metagenome, highlighting the need to perform metaproteomics when studying complex microbiome samples.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/química , Fezes/microbiologia , Microbioma Gastrointestinal , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estudos de Coortes , Masculino , Espectrometria de Massas , Metagenoma , Camundongos , Proteômica , Fluxo de Trabalho
8.
Microbiome ; 9(1): 157, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238386

RESUMO

BACKGROUND: Autism spectrum disorders (ASD) are associated with dysregulation of the microbiota-gut-brain axis, changes in microbiota composition as well as in the fecal, serum, and urine levels of microbial metabolites. Yet a causal relationship between dysregulation of the microbiota-gut-brain axis and ASD remains to be demonstrated. Here, we hypothesized that the microbial metabolite p-Cresol, which is more abundant in ASD patients compared to neurotypical individuals, could induce ASD-like behavior in mice. RESULTS: Mice exposed to p-Cresol for 4 weeks in drinking water presented social behavior deficits, stereotypies, and perseverative behaviors, but no changes in anxiety, locomotion, or cognition. Abnormal social behavior induced by p-Cresol was associated with decreased activity of central dopamine neurons involved in the social reward circuit. Further, p-Cresol induced changes in microbiota composition and social behavior deficits could be transferred from p-Cresol-treated mice to control mice by fecal microbiota transplantation (FMT). We also showed that mice transplanted with the microbiota of p-Cresol-treated mice exhibited increased fecal p-Cresol excretion, compared to mice transplanted with the microbiota of control mice. In addition, we identified possible p-Cresol bacterial producers. Lastly, the microbiota of control mice rescued social interactions, dopamine neurons excitability, and fecal p-Cresol levels when transplanted to p-Cresol-treated mice. CONCLUSIONS: The microbial metabolite p-Cresol induces selectively ASD core behavioral symptoms in mice. Social behavior deficits induced by p-Cresol are dependant on changes in microbiota composition. Our study paves the way for therapeutic interventions targeting the microbiota and p-Cresol production to treat patients with ASD. Video abstract.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Microbioma Gastrointestinal , Animais , Transtorno Autístico/etiologia , Cresóis , Transplante de Microbiota Fecal , Humanos , Camundongos
9.
Gut Microbes ; 12(1): 1810531, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32893721

RESUMO

Fecal microbiota transplant (FMT) is a highly-effective therapy for recurrent Clostridioides difficile infection (rCDI), and shows promise for certain non-CDI indications. However, at present, its mechanisms of efficacy have remained poorly understood. Recent studies by our laboratory have noted the particular key importance of restoration of gut microbe-metabolite interactions in the ability of FMT to treat rCDI, including the impact of FMT upon short chain fatty acid (SCFAs) and bile acid metabolism. This includes a significant impact of these metabolites upon the life cycle of C. difficile directly, along with potential postulated additional benefits, including effects upon host immune response. In this Addendum, we first present an overview of these recent advancements in this field, and then describe additional novel data from our laboratory on the impact of FMT for rCDI upon several gut microbial-derived metabolites which had not previously been implicated as being of relevance.


Assuntos
Clostridioides difficile/fisiologia , Infecções por Clostridium/terapia , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Ácidos e Sais Biliares/química , Ácidos e Sais Biliares/metabolismo , Infecções por Clostridium/microbiologia , Ácidos Graxos Voláteis/química , Ácidos Graxos Voláteis/metabolismo , Humanos , Recidiva
10.
Nutrients ; 12(8)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32718098

RESUMO

There is extensive information of the beneficial effects of virgin olive oil (VOO), especially on cardiovascular diseases. Some VOO healthy properties have been attributed to their phenolic-compounds (PCs). The aim of this review is to present updated data on the effects of olive oil (OO) PCs on the gut microbiota, lipid metabolism, immune system, and obesity, as well as on the crosstalk among them. We summarize experiments and clinical trials which assessed the specific effects of the olive oil phenolic-compounds (OOPCs) without the synergy with OO-fats. Several studies have demonstrated that OOPC consumption increases Bacteroidetes and/or reduces the Firmicutes/Bacteroidetes ratio, which have both been related to atheroprotection. OOPCs also increase certain beneficial bacteria and gut-bacteria diversity which can be therapeutic for lipid-immune disorders and obesity. Furthermore, some of the mechanisms implicated in the crosstalk between OOPCs and these disorders include antimicrobial-activity, cholesterol microbial metabolism, and metabolites produced by bacteria. Specifically, OOPCs modulate short-chain fatty-acids produced by gut-microbiota, which can affect cholesterol metabolism and the immune system, and may play a role in weight gain through promoting satiety. Since data in humans are scarce, there is a necessity for more clinical trials designed to assess the specific role of the OOPCs in this crosstalk.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Sistema Imunitário/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade/tratamento farmacológico , Azeite de Oliva/farmacologia , Fenóis/farmacologia , Doenças Cardiovasculares/prevenção & controle , Colesterol , Humanos , Lipídeos , Azeite de Oliva/química
11.
Acta Diabetol ; 56(5): 493-500, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30903435

RESUMO

The human gut is a home for more than 100 trillion bacteria, far more than all other microbial populations resident on the body's surface. The human gut microbiome is considered as a microbial organ symbiotically operating within the host. It is a collection of different cell lineages that are capable of communicating with each other and the host and has an ability to undergo self-replication for its repair and maintenance. As the gut microbiota is involved in many host processes including growth and development, an imbalance in its ecological composition may lead to disease and dysfunction in the human. Gut microbial degradation of nutrients produces bioactive metabolites that bind target receptors, activating signalling cascades, and modulating host metabolism. This review covers current findings on the nutritional and pharmacological roles of selective gut microbial metabolites, short-chain fatty acids, methylamines and indoles, as well as discussing nutritional interventions to modulate the microbiome.


Assuntos
Dieta , Ácidos Graxos Voláteis/administração & dosagem , Microbioma Gastrointestinal/fisiologia , Indóis/administração & dosagem , Metilaminas/administração & dosagem , Bactérias , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Microbiota/efeitos dos fármacos , Microbiota/fisiologia
12.
Mol Metab ; 21: 22-35, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30686771

RESUMO

OBJECTIVES: The Fragile X Mental Retardation Protein (FMRP) is a widely expressed RNA-binding protein involved in translation regulation. Since the absence of FMRP leads to Fragile X Syndrome (FXS) and autism, FMRP has been extensively studied in brain. The functions of FMRP in peripheral organs and on metabolic homeostasis remain elusive; therefore, we sought to investigate the systemic consequences of its absence. METHODS: Using metabolomics, in vivo metabolic phenotyping of the Fmr1-KO FXS mouse model and in vitro approaches, we show that the absence of FMRP induced a metabolic shift towards enhanced glucose tolerance and insulin sensitivity, reduced adiposity, and increased ß-adrenergic-driven lipolysis and lipid utilization. RESULTS: Combining proteomics and cellular assays, we highlight that FMRP loss increased hepatic protein synthesis and impacted pathways notably linked to lipid metabolism. Mapping metabolomic and proteomic phenotypes onto a signaling and metabolic network, we predicted that the coordinated metabolic response to FMRP loss was mediated by dysregulation in the abundances of specific hepatic proteins. We experimentally validated these predictions, demonstrating that the translational regulator FMRP associates with a subset of mRNAs involved in lipid metabolism. Finally, we highlight that FXS patients mirror metabolic variations observed in Fmr1-KO mice with reduced circulating glucose and insulin and increased free fatty acids. CONCLUSIONS: Loss of FMRP results in a widespread coordinated systemic response that notably involves upregulation of protein translation in the liver, increased utilization of lipids, and significant changes in metabolic homeostasis. Our study unravels metabolic phenotypes in FXS and further supports the importance of translational regulation in the homeostatic control of systemic metabolism.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Glucose/metabolismo , Lipólise , Adipócitos/metabolismo , Animais , Modelos Animais de Doenças , Ácidos Graxos não Esterificados/metabolismo , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/sangue , Síndrome do Cromossomo X Frágil/patologia , Técnicas de Inativação de Genes , Glucose/análise , Homeostase , Humanos , Insulina/análise , Insulina/metabolismo , Leptina/metabolismo , Fígado/metabolismo , Masculino , Metabolômica , Camundongos , Camundongos Knockout , Biossíntese de Proteínas , Proteômica , RNA Mensageiro/metabolismo
14.
Nat Med ; 24(7): 1070-1080, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29942096

RESUMO

Hepatic steatosis is a multifactorial condition that is often observed in obese patients and is a prelude to non-alcoholic fatty liver disease. Here, we combine shotgun sequencing of fecal metagenomes with molecular phenomics (hepatic transcriptome and plasma and urine metabolomes) in two well-characterized cohorts of morbidly obese women recruited to the FLORINASH study. We reveal molecular networks linking the gut microbiome and the host phenome to hepatic steatosis. Patients with steatosis have low microbial gene richness and increased genetic potential for the processing of dietary lipids and endotoxin biosynthesis (notably from Proteobacteria), hepatic inflammation and dysregulation of aromatic and branched-chain amino acid metabolism. We demonstrated that fecal microbiota transplants and chronic treatment with phenylacetic acid, a microbial product of aromatic amino acid metabolism, successfully trigger steatosis and branched-chain amino acid metabolism. Molecular phenomic signatures were predictive (area under the curve = 87%) and consistent with the gut microbiome having an effect on the steatosis phenome (>75% shared variation) and, therefore, actionable via microbiome-based therapies.


Assuntos
Diabetes Mellitus/genética , Metagenômica , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/genética , Animais , Células Cultivadas , Estudos de Coortes , Fatores de Confusão Epidemiológicos , Transplante de Microbiota Fecal , Feminino , Hepatócitos/metabolismo , Humanos , Metaboloma , Metabolômica , Camundongos , Microbiota , Fenótipo , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA