Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2754: 55-75, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512660

RESUMO

Tau is a microtubule-associated protein that belongs to the Intrinsically Disordered Proteins (IDPs) family. IDPs or Intrinsically Disordered Regions (IDRs) play key roles in protein interaction networks and their dysfunctions are often related to severe diseases. Defined by their lack of stable secondary and tertiary structures in physiological conditions while being functional, these proteins use their inherent structural flexibility to adapt to and interact with various binding partners. Knowledges on the structural dynamics of IDPs and their different conformers are crucial to finely decipher fundamental biological processes controlled by mechanisms such as conformational adaptations or switches, induced fit, or conformational selection events. Different mechanisms of binding have been proposed: among them, the so-called folding-upon-binding in which the IDP adopts a certain conformation upon interacting with a partner protein, or the formation of a "fuzzy" complex in which the IDP partly keeps its dynamical character at the surface of its partner. The dynamical nature and physicochemical properties of unbound as well as bound IDPs make this class of proteins particularly difficult to characterize by classical bio-structural techniques and require specific approaches for the fine description of their inherent dynamics.Among other techniques, Site-Directed Spin Labeling combined with Electron Paramagnetic Resonance (SDSL-EPR) spectroscopy has gained much interest in this last decade for the study of IDPs. SDSL-EPR consists in grafting a paramagnetic label (mainly a nitroxide radical) at selected site(s) of the macromolecule under interest followed by its observation using and/or combining different EPR strategies. These nitroxide spin labels detected by continuous wave (cw) EPR spectroscopy are used as perfect reporters or "spy spins" of their local environment, being able to reveal structural transitions, folding/unfolding events, etc. Another approach is based on the measurement of inter-label distance distributions in the 1.5-8.0 nm range using pulsed dipolar EPR experiments, such as Double Electron-Electron Resonance (DEER) spectroscopy. The technique is then particularly well suited to study the behavior of Tau in its interaction with its physiological partner: microtubules (MTs). In this chapter we provide a detailed experimental protocol for the labeling of Tau protein and its EPR study while interacting with preformed (Paclitaxel-stabilized) MTs, or using Tau as MT inducer. We show how the choice of nitroxide label can be crucial to obtain functional information on Tau/tubulin complexes.


Assuntos
Proteínas Intrinsicamente Desordenadas , Óxidos de Nitrogênio , Proteínas tau , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Marcadores de Spin , Microtúbulos
2.
Chemistry ; 30(19): e202304307, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38277424

RESUMO

The flavoprotein Cytochrome P450 reductase (CPR) is the unique electron pathway from NADPH to Cytochrome P450 (CYPs). The conformational dynamics of human CPR in solution, which involves transitions from a "locked/closed" to an "unlocked/open" state, is crucial for electron transfer. To date, however, the factors guiding these changes remain unknown. By Site-Directed Spin Labelling coupled to Electron Paramagnetic Resonance spectroscopy, we have incorporated a non-canonical amino acid onto the flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) domains of soluble human CPR, and labelled it with a specific nitroxide spin probe. Taking advantage of the endogenous FMN cofactor, we successfully measured for the first time, the distance distribution by DEER between the semiquinone state FMNH• and the nitroxide. The DEER data revealed a salt concentration-dependent distance distribution, evidence of an "open" CPR conformation at high salt concentrations exceeding previous reports. We also conducted molecular dynamics simulations which unveiled a diverse ensemble of conformations for the "open" semiquinone state of the CPR at high salt concentration. This study unravels the conformational landscape of the one electron reduced state of CPR, which had never been studied before.


Assuntos
Aminoácidos , NADPH-Ferri-Hemoproteína Redutase , Óxidos de Nitrogênio , Humanos , Oxirredução , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Aminoácidos/metabolismo , Marcadores de Spin , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , NADP/química , Flavinas/química , Compostos Orgânicos , Mononucleotídeo de Flavina/química , Flavina-Adenina Dinucleotídeo/química , Cinética
3.
J Biol Chem ; 300(1): 105546, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072053

RESUMO

ATP-binding cassette (ABC) transporters are ubiquitous membrane proteins responsible for the translocation of a wide diversity of substrates across biological membranes. Some of them confer multidrug or antimicrobial resistance to cancer cells and pathogenic microorganisms, respectively. Despite a wealth of structural data gained in the last two decades, the molecular mechanism of these multidrug efflux pumps remains elusive, including the extent of separation between the two nucleotide-binding domains (NBDs) during the transport cycle. Based on recent outward-facing structures of BmrA, a homodimeric multidrug ABC transporter from Bacillus subtilis, we introduced a cysteine mutation near the C-terminal end of the NBDs to analyze the impact of disulfide-bond formation on BmrA function. Interestingly, the presence of the disulfide bond between the NBDs did not prevent the ATPase, nor did it affect the transport of Hoechst 33342 and doxorubicin. Yet, the 7-amino-actinomycin D was less efficiently transported, suggesting that a further opening of the transporter might improve its ability to translocate this larger compound. We solved by cryo-EM the apo structures of the cross-linked mutant and the WT protein. Both structures are highly similar, showing an intermediate opening between their NBDs while their C-terminal extremities remain in close proximity. Distance measurements obtained by electron paramagnetic resonance spectroscopy support the intermediate opening found in these 3D structures. Overall, our data suggest that the NBDs of BmrA function with a tweezers-like mechanism distinct from the related lipid A exporter MsbA.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Bacillus subtilis , Proteínas de Bactérias , Proteínas de Transporte , Nucleotídeos , Trifosfato de Adenosina/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dissulfetos/metabolismo , Nucleotídeos/metabolismo , Domínios Proteicos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cisteína/química , Cisteína/genética , Transporte Biológico
4.
Molecules ; 28(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36771013

RESUMO

Site-directed spin labeling (SDSL) combined with continuous wave electron paramagnetic resonance (cw EPR) spectroscopy is a powerful technique to reveal, at the local level, the dynamics of structural transitions in proteins. Here, we consider SDSL-EPR based on the selective grafting of a nitroxide on the protein under study, followed by X-band cw EPR analysis. To extract valuable quantitative information from SDSL-EPR spectra and thus give a reliable interpretation on biological system dynamics, a numerical simulation of the spectra is required. However, regardless of the numerical tool chosen to perform such simulations, the number of parameters is often too high to provide unambiguous results. In this study, we have chosen SimLabel to perform such simulations. SimLabel is a graphical user interface (GUI) of Matlab, using some functions of Easyspin. An exhaustive review of the parameters used in this GUI has enabled to define the adjustable parameters during the simulation fitting and to fix the others prior to the simulation fitting. Among them, some are set once and for all (gy, gz) and others are determined (Az, gx) thanks to a supplementary X-band spectrum recorded on a frozen solution. Finally, we propose guidelines to perform the simulation of X-band cw-EPR spectra of nitroxide labeled proteins at room temperature, with no need of uncommon higher frequency spectrometry and with the minimal number of variable parameters.


Assuntos
Óxidos de Nitrogênio , Proteínas , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Marcadores de Spin , Óxidos de Nitrogênio/química , Proteínas/química
5.
Comput Struct Biotechnol J ; 20: 3695-3707, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35891793

RESUMO

Intrinsic protein flexibility is of overwhelming relevance for intermolecular recognition and adaptability of highly dynamic ensemble of complexes, and the phenomenon is essential for the understanding of numerous biological processes. These conformational ensembles-encounter complexes-lack a unique organization, which prevents the determination of well-defined high resolution structures. This is the case for complexes involving the oncoprotein SET/template-activating factor-Iß (SET/TAF-Iß), a histone chaperone whose functions and interactions are significantly affected by its intrinsic structural plasticity. Besides its role in chromatin remodeling, SET/TAF-Iß is an inhibitor of protein phosphatase 2A (PP2A), which is a key phosphatase counteracting transcription and signaling events controlling the activity of DNA damage response (DDR) mediators. During DDR, SET/TAF-Iß is sequestered by cytochrome c (Cc) upon migration of the hemeprotein from mitochondria to the cell nucleus. Here, we report that the nuclear SET/TAF-Iß:Cc polyconformational ensemble is able to activate PP2A. In particular, the N-end folded, globular region of SET/TAF-Iß (a.k.a. SET/TAF-Iß ΔC)-which exhibits an unexpected, intrinsically highly dynamic behavior-is sufficient to be recognized by Cc in a diffuse encounter manner. Cc-mediated blocking of PP2A inhibition is deciphered using an integrated structural and computational approach, combining small-angle X-ray scattering, electron paramagnetic resonance, nuclear magnetic resonance, calorimetry and molecular dynamics simulations.

6.
Chemistry ; 25(60): 13766-13776, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31424584

RESUMO

1-Aminocyclopropane-1-carboxylic oxidase (ACCO) is a non-heme iron(II)-containing enzyme involved in the biosynthesis of the phytohormone ethylene, which regulates fruit ripening and flowering in plants. The active conformation of ACCO, and in particular that of the C-terminal part, remains unclear and open and closed conformations have been proposed. In this work, a combined experimental and computational study to understand the conformation and dynamics of the C-terminal part is reported. Site-directed spin-labeling coupled to electron paramagnetic resonance (SDSL-EPR) spectroscopy was used. Mutagenesis experiments were performed to generate active enzymes bearing two paramagnetic labels (nitroxide radicals) anchored on cysteine residues, one in the main core and one in the C-terminal part. Inter-spin distance distributions were measured by pulsed EPR spectroscopy and compared with the results of molecular dynamics simulations. The results reveal the existence of a flexibility of the C-terminal part. This flexibility generates several conformations of the C-terminal part of ACCO that correspond neither to the existing crystal structures nor to the modelled structures. This highly dynamic region of ACCO raises questions on its exact function during enzymatic activity.

7.
Front Aging Neurosci ; 11: 204, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447664

RESUMO

Microtubules (MTs) play a fundamental role in many vital processes such as cell division and neuronal activity. They are key structural and functional elements in axons, supporting neurite differentiation and growth, as well as transporting motor proteins along the axons, which use MTs as support tracks. Tau is a stabilizing MT associated protein, whose functions are mainly regulated by phosphorylation. A disruption of the MT network, which might be caused by Tau loss of function, is observed in a group of related diseases called tauopathies, which includes Alzheimer's disease (AD). Tau is found hyperphosphorylated in AD, which might account for its loss of MT stabilizing capacity. Since destabilization of MTs after dissociation of Tau could contribute to toxicity in neurodegenerative diseases, a molecular understanding of this interaction and its regulation is essential.

8.
Mol Biotechnol ; 61(9): 650-662, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31201604

RESUMO

1-Aminocyclopropane carboxylic acid oxidase (ACCO) catalyzes the last step of ethylene biosynthesis in plants. Although some sets of structures have been described, there are remaining questions on the active conformation of ACCO and in particular, on the conformation and potential flexibility of the C-terminal part of the enzyme. Several techniques based on the introduction of a probe through chemical modification of amino acid residues have been developed for determining the conformation and dynamics of proteins. Cysteine residues are recognized as convenient targets for selective chemical modification of proteins, thanks to their relatively low abundance in protein sequences and to their well-mastered chemical reactivity. ACCOs have generally 3 or 4 cysteine residues in their sequences. By a combination of approaches including directed mutagenesis, activity screening on cell extracts, biophysical and biochemical characterization of purified enzymes, we evaluated the effect of native cysteine replacement and that of insertion of cysteines on the C-terminal part in tomato ACCO. Moreover, we have chosen to use paramagnetic labels targeting cysteine residues to monitor potential conformational changes by electron paramagnetic resonance (EPR). Given the level of conservation of the cysteines in ACCO from different plants, this work provides an essential basis for the use of cysteine as probe-anchoring residues.


Assuntos
Aminoácido Oxirredutases/química , Aminoácidos Cíclicos/química , Cisteína/química , Etilenos/química , Óxidos de Nitrogênio/química , Proteínas de Plantas/química , Solanum lycopersicum/enzimologia , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Substituição de Aminoácidos , Aminoácidos Cíclicos/metabolismo , Sítios de Ligação , Clonagem Molecular , Cisteína/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Etilenos/biossíntese , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Solanum lycopersicum/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Óxidos de Nitrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Marcadores de Spin , Especificidade por Substrato
9.
Sci Rep ; 8(1): 13846, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30218010

RESUMO

Tau is a Microtubule-associated protein that induces and stabilizes the formation of the Microtubule cytoskeleton and plays an important role in neurodegenerative diseases. The Microtubules binding region of Tau has been determined for a long time but where and how Tau binds to its partner still remain a topic of debate. We used Site Directed Spin Labeling combined with EPR spectroscopy to monitor Tau upon binding to either Taxol-stabilized MTs or to αß-tubulin when Tau is directly used as an inducer of MTs formation. Using maleimide-functionalized labels grafted on the two natural cysteine residues of Tau, we found in both cases that Tau remains highly flexible in these regions confirming the fuzziness of Tau:MTs complexes. More interestingly, using labels linked by a disulfide bridge, we evidenced for the first time thiol disulfide exchanges between αß-tubulin or MTs and Tau. Additionally, Tau fragments having the two natural cysteines or variants containing only one of them were used to determine the role of each cysteine individually. The difference observed in the label release kinetics between preformed MTs or Tau-induced MTs, associated to a comparison of structural data, led us to propose two putative binding sites of Tau on αß-tubulin.


Assuntos
Dissulfetos/metabolismo , Compostos de Sulfidrila/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo , Animais , Sítios de Ligação , Microtúbulos/metabolismo , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína
10.
Arch Biochem Biophys ; 623-624: 31-41, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28522117

RESUMO

1-Aminocyclopropane-1-carboxylic acid oxidase (ACCO) is a non heme iron(II) containing enzyme that catalyzes the final step of the ethylene biosynthesis in plants. The iron(II) ion is bound in a facial triad composed of two histidines and one aspartate (H177, D179 and H234). Several active site variants were generated to provide alternate binding motifs and the enzymes were reconstituted with copper(II). Continuous wave (cw) and pulsed Electron Paramagnetic Resonance (EPR) spectroscopies as well as Density Functional Theory (DFT) calculations were performed and models for the copper(II) binding sites were deduced. In all investigated enzymes, the copper ion is equatorially coordinated by the two histidine residues (H177 and H234) and probably two water molecules. The copper-containing enzymes are inactive, even when hydrogen peroxide is used in peroxide shunt approach. EPR experiments and DFT calculations were undertaken to investigate substrate's (ACC) binding on the copper ion and the results were used to rationalize the lack of copper-mediated activity.


Assuntos
Aminoácido Oxirredutases/metabolismo , Cobre/metabolismo , Petunia/enzimologia , Aminoácido Oxirredutases/química , Sítios de Ligação , Domínio Catalítico , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Petunia/química , Petunia/metabolismo , Conformação Proteica , Especificidade por Substrato
11.
Inorg Chem ; 56(6): 3287-3301, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28257190

RESUMO

Oxoiron(IV) species are implicated as reactive intermediates in nonheme monoiron oxygenases, often acting as the agent for hydrogen-atom transfer from substrate. A histidine is the most likely ligand trans to the oxo unit in most enzymes characterized thus far but is replaced by a carboxylate in the case of isopenicillin N synthase. As the effect of a trans carboxylate ligand on the properties of the oxoiron(IV) unit has not been systematically studied, we have synthesized and characterized four oxoiron(IV) complexes supported by the tetramethylcyclam (TMC) macrocycle and having a carboxylate ligand trans to the oxo unit. Two complexes have acetate or propionate axial ligands, while the other two have the carboxylate functionality tethered to the macrocyclic ligand framework by one or two methylene units. Interestingly, these four complexes exhibit substrate oxidation rates that differ by more than 100-fold, despite having Ep,c values for the reduction of the Fe═O unit that span a range of only 130 mV. Eyring parameters for 1,4-cyclohexadiene oxidation show that reactivity differences originate from differences in activation enthalpy between complexes with tethered carboxylates and those with untethered carboxylates, in agreement with computational results. As noted previously for the initial subset of four complexes, the logarithms of the oxygen atom transfer rates of 11 complexes of the FeIV(O)TMC(X) series increase linearly with the observed Ep,c values, reflecting the electrophilicity of the Fe═O unit. In contrast, no correlation with Ep,c values is observed for the corresponding hydrogen atom transfer (HAT) reaction rates; instead, the HAT rates increase as the computed triplet-quintet spin state gap narrows, consistent with Shaik's two-state-reactivity model. In fact, the two complexes with untethered carboxylates are among the most reactive HAT agents in this series, demonstrating that the axial ligand can play a key role in tuning the HAT reactivity in a nonheme iron enzyme active site.

12.
Biochim Biophys Acta ; 1857(1): 89-97, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26518384

RESUMO

The mitochondrial ATPase inhibitor, IF1, regulates the activity of the mitochondrial ATP synthase. The oligomeric state of IF1 related to pH is crucial for its inhibitory activity. Although extensive structural studies have been performed to characterize the oligomeric states of bovine IF1, only little is known concerning those of yeast IF1. While bovine IF1 can be found as an inhibitory dimer at low pH and a non-inhibitory tetramer at high pH, a monomer/dimer equilibrium has been described for yeast IF1, high pH values favoring the monomeric state. Combining different strategies involving the grafting of nitroxide spin labels combined with Electron Paramagnetic Resonance (EPR) spectroscopy, the present study brings the first structural characterization, at the residue level, of yeast IF1 in its dimeric form. The results show that the dimerization interface involves the central region of the peptide revealing that the dimer corresponds to a non-inhibitory state. Moreover, we demonstrate that the C-terminal region of the peptide is highly dynamic and that this segment is probably folded back onto the central region. Finally, the pH-dependence of the inter-label distance distribution has been observed indicating a conformational change between two structural states in the dimer.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Multimerização Proteica , Proteínas/química , Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Proteína Inibidora de ATPase
13.
Biophys J ; 109(8): 1600-7, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26488651

RESUMO

We have investigated the role of electrostatic interactions in the transport of nucleic acids and ions through nanopores. The passage of DNA through nanopores has so far been conjectured to involve a free-energy barrier for entry, followed by a downhill translocation where the driving voltage accelerates the polymer. We have tested the validity of this conjecture by using two toxins, α-hemolysin and aerolysin, which differ in their shape, size, and charge. The characteristic timescales in each toxin as a function of temperature show that the entry barrier is ∼15 kBT and the translocation barrier is ∼35 kBT, although the electrical force in the latter step is much stronger. Resolution of this fact, using a theoretical model, reveals that the attraction between DNA and the charges inside the barrel of the pore is the most dominant factor in determining the translocation speed and not merely the driving electrochemical potential gradient.


Assuntos
Transporte Biológico , DNA de Cadeia Simples , Nanoporos , Eletricidade Estática , Temperatura , Toxinas Bacterianas/toxicidade , Transporte Biológico/efeitos dos fármacos , Proteínas Hemolisinas/toxicidade , Membranas Artificiais , Modelos Teóricos , Movimento (Física) , Fosfatidilcolinas , Polímeros , Proteínas Citotóxicas Formadoras de Poros/toxicidade
14.
Front Mol Biosci ; 2: 21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26042221

RESUMO

Proteins are highly variable biological systems, not only in their structures but also in their dynamics. The most extreme example of dynamics is encountered within the family of Intrinsically Disordered Proteins (IDPs), which are proteins lacking a well-defined 3D structure under physiological conditions. Among the biophysical techniques well-suited to study such highly flexible proteins, Site-Directed Spin Labeling combined with EPR spectroscopy (SDSL-EPR) is one of the most powerful, being able to reveal, at the residue level, structural transitions such as folding events. SDSL-EPR is based on selective grafting of a paramagnetic label on the protein under study and is limited neither by the size nor by the complexity of the system. The objective of this mini-review is to describe the basic strategy of SDSL-EPR and to illustrate how it can be successfully applied to characterize the structural behavior of IDPs. Recent developments aimed at enlarging the panoply of SDSL-EPR approaches are presented in particular newly synthesized spin labels that allow the limitations of the classical ones to be overcome. The potentialities of these new spin labels will be demonstrated on different examples of IDPs.

15.
Chem Sci ; 5(3): 1204-1215, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24660055

RESUMO

Treatment of [FeII(L)](OTf)2 (4), (where L = 1,4,8-Me3cyclam-11-CH2C(O)NMe2) with iodosylbenzene yielded the corresponding S = 1 oxoiron(IV) complex [FeIV(O(L)](OTf)2 (5) in nearly quantitative yield. The remarkably high stability of 5 (t1/2 ≈ 5 days at 25 °C) facilitated its characterization by X-ray crystallography and a raft of spectroscopic techniques. Treatment of 5 with strong base was found to generate a distinct, significantly less stable S = 1 oxoiron(IV) complex, 6 (t1/2 ~ 1.5 hrs. at 0 °C), which could be converted back to 5 by addition of a strong acid; these observations indicate that 5 and 6 represent a conjugate acid-base pair. That 6 can be formulated as [FeIV(O)(L-H)](OTf) was further supported by ESI mass spectrometry, spectroscopic and electrochemical studies, and DFT calculations. The close structural similarity of 5 and 6 provided a unique opportunity to probe the influence of the donor trans to the FeIV=O unit upon its reactivity in H-atom transfer (HAT) and O-atom transfer (OAT), and 5 was found to display greater reactivity than 6 in both OAT and HAT. While the greater OAT reactivity of 5 is expected on the basis of its higher redox potential, its higher HAT reactivity does not follow the anti-electrophilic trend reported for a series of [FeIV(O)(TMC)(X)] complexes (TMC = tetramethylcyclam) and thus appears to be inconsistent with the Two-State Reactivity rationale that is the prevailing explanation for the relative facility of oxoiron(IV) complexes to undergo HAT.

16.
Phys Chem Chem Phys ; 16(9): 4202-9, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24452480

RESUMO

Site Directed Spin Labeling (SDSL) combined with EPR spectroscopy is a very powerful approach to investigate structural transitions in proteins in particular flexible or even disordered ones. Conventional spin labels are based on nitroxide derivatives leading to classical 3-line spectra whose spectral shapes are indicative of the environment of the labels and thus constitute good reporters of structural modifications. However, the similarity of these spectral shapes precludes probing two regions of a protein or two partner proteins simultaneously. To overcome the limitation due to the weak diversity of nitroxide label EPR spectral shapes, we designed a new spin label based on a ß-phosphorylated nitroxide giving 6-line spectra. This paper describes the synthesis of this new spin label, its grafting at four different positions of a model disordered protein able to undergo an induced α-helical folding and its characterization by EPR spectroscopy. For comparative purposes, a classical nitroxide has been grafted at the same positions of the model protein. The ability of the new label to report on structural transitions was evaluated by analyzing the spectral shape modifications induced either by the presence of a secondary structure stabilizer (trifluoroethanol) or by the presence of a partner protein. Taken together the results demonstrate that the new phosphorylated label gives a very distinguishable signature which is able to report from subtle to larger structural transitions, as efficiently as the classical spin label. As a complementary approach, molecular dynamics (MD) calculations were performed to gain further insights into the binding process between the labeled NTAIL and PXD. MD calculations revealed that the new label does not disturb the interaction between the two partner proteins and reinforced the conclusion on its ability to probe different local environments in a protein. Taken together this study represents an important step forward in the extension of the panoply of SDSL-EPR approaches.


Assuntos
Óxidos de Nitrogênio/química , Proteínas/química , Espectroscopia de Ressonância de Spin Eletrônica , Simulação de Dinâmica Molecular , Fosforilação , Estrutura Secundária de Proteína , Proteínas/metabolismo , Marcadores de Spin , Trifluoretanol/química
17.
Bioconjug Chem ; 24(6): 1110-7, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23642211

RESUMO

Site-directed spin labeling (SDSL) combined with electron paramagnetic resonance (EPR) spectroscopy has emerged as a powerful approach to study structure and dynamics in proteins. One limitation of this approach is the fact that classical spin labels are functionalized to be grafted on natural or site-directed mutagenesis generated cysteine residues. Despite the widespread success of cysteine-based modification strategies, the technique becomes unsuitable when cysteine residues play a functional or structural role in the protein under study. To overcome this limitation, we propose an isoindoline-based nitroxide to selectively target tyrosine residues using a Mannich type reaction, the feasibility of which has been demonstrated in a previous study. This nitroxide has been synthesized and successfully grafted successively on p-cresol, a small tetrapeptide and a model protein: a small chloroplastic protein CP12 having functional cysteines and a single tyrosine. Studying the association of the labeled CP12 with its partner protein, we showed that the isoindoline-based nitroxide is a good reporter to reveal changes in its local environment contrary to the previous study where the label was poorly sensitive to probe structural changes. The successful targeting of tyrosine residues with the isoindoline-based nitroxide thus offers a highly promising approach, complementary to the classical cysteine-SDSL one, which significantly enlarges the field of applications of the technique for probing protein dynamics.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Isoindóis/química , Óxido Nítrico/química , Marcadores de Spin , Tirosina/química , Estrutura Molecular , Óxido Nítrico/síntese química
18.
J Biomol Struct Dyn ; 31(5): 453-71, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22881220

RESUMO

This work aims at characterizing structural transitions within the intrinsically disordered C-terminal domain of the nucleoprotein (NTAIL) from the Nipah and Hendra viruses, two recently emerged pathogens gathered within the Henipavirus genus. To this end, we used site-directed spin labeling combined with electron paramagnetic resonance spectroscopy to investigate the α-helical-induced folding that Henipavirus NTAIL domains undergo in the presence of the C-terminal X domain of the phosphoprotein (PXD). For each NTAIL protein, six positions located within four previously proposed molecular recognition elements (MoREs) were targeted for spin labeling, with three of these positions (475, 481, and 487) falling within the MoRE responsible for binding to PXD (Box3). A detailed analysis of the impact of the partner protein on the labeled NTAIL variants revealed a dramatic modification in the environment of the spin labels grafted within Box3, with the observed modifications supporting the formation of an induced α-helix within this region. In the free state, the slightly lower mobility of the spin labels grafted within Box3 as compared to the other positions suggests the existence of a transiently populated α-helix, as already reported for measles virus (MeV) NTAIL. Comparison with the well-characterized MeV NTAIL-PXD system, allowed us to validate the structural models of Henipavirus NTAIL-PXD complexes that we previously proposed. In addition, this study highlighted a few notable differences between the Nipah and Hendra viruses. In particular, the observation of composite spectra for the free form of the Nipah virus NTAIL variants spin labeled in Box3 supports conformational heterogeneity of this partly pre-configured α-helix, with the pre-existence of stable α-helical segments. Altogether these results provide insights into the molecular mechanisms of the Henipavirus NTAIL-PXD binding reaction.


Assuntos
Vírus Hendra , Vírus Nipah , Nucleoproteínas/química , Proteínas Virais/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Nucleoproteínas/genética , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Virais/genética
19.
Methods Mol Biol ; 895: 361-86, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22760328

RESUMO

Electron paramagnetic resonance (EPR) spectroscopy is a technique that specifically detects unpaired electrons. EPR sensitive reporter groups (spin labels or spin probes) can be introduced into biological systems via site-directed spin labeling (SDSL). This is usually accomplished by cysteine-substitution mutagenesis followed by covalent modification of the unique sulfhydryl group with a selective nitroxide reagent. SDSL EPR spectroscopy has been shown to be a sensitive and powerful method to study structural transitions within intrinsically disordered proteins (IDPs). In this chapter, we provide a detailed experimental protocol for this approach and present a few examples of EPR spectral shapes illustrative of various mobility regimes of the spin probe, reflecting different protein topologies.


Assuntos
Proteínas Recombinantes de Fusão/química , Algoritmos , Cromatografia de Afinidade , Dicroísmo Circular , Cisteína/química , Cisteína/genética , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli , Mutagênese Sítio-Dirigida , Óxidos de Nitrogênio/química , Reação em Cadeia da Polimerase , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Coloração e Rotulagem , Sacarose/química , Trifluoretanol/química
20.
Anal Chem ; 84(9): 4071-6, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22486207

RESUMO

The nanopore technique has great potential to discriminate conformations of proteins. It is a very interesting system to mimic and understand the process of translocation of biomacromolecules through a cellular membrane. In particular, the unfolding and folding of proteins before and after going through the nanopore are not well understood. We study the thermal unfolding of a protein, probed by two protein nanopores: aerolysin and α-hemolysin. At room temperature, the native folded protein does not enter into the pore. When we increase the temperature from 25 to 50 °C, the molecules unfold and the event frequency of current blockade increases. A similar sigmoid function fits the normalized event frequency evolution for both nanopores, thus the unfolding curve does not depend on the structure and the net charge of the nanopore. We performed also a circular dichroism bulk experiment. We obtain the same melting temperature (around 45 °C) using the bulk and single molecule techniques.


Assuntos
Toxinas Bacterianas/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas Hemolisinas/química , Nanoporos , Proteínas Periplásmicas de Ligação/química , Proteínas Citotóxicas Formadoras de Poros/química , Desdobramento de Proteína , Dicroísmo Circular , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA