Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38006083

RESUMO

Addressing the growing need for environmentally friendly fungicides in agriculture, this study explored the potential of biopolymer microparticles loaded with metal ions as a novel approach to combat fungal pathogens. Novel alginate microspheres and chitosan/alginate microcapsules loaded with zinc or with zinc and silver ions were prepared and characterized (microparticle size, morphology, topography, encapsulation efficiency, loading capacity, and swelling behavior). Investigation of molecular interactions in microparticles using FTIR-ATR spectroscopy exhibited complex interactions between all constituents. Fitting to the simple Korsmeyer-Peppas empirical model revealed the rate-controlling mechanism of metal ions release from microparticles is Fickian diffusion. Lower values of the release constant k imply a slower release rate of Zn2+ or Ag+ ions from microcapsules compared to that of microspheres. The antimicrobial potential of the new formulations against the fungus Botrytis cinerea was evaluated. When subjected to tests against the fungus, microspheres exhibited superior antifungal activity especially those loaded with both zinc and silver ions, reducing fungal growth up to 98.9% and altering the hyphal structures. Due to the slower release of metal ions, the microcapsule formulations seem suitable for plant protection throughout the growing season. The results showed the potential of these novel microparticles as powerful fungicides in agriculture.

2.
Arh Hig Rada Toksikol ; 73(1): 83-87, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35390244

RESUMO

The ascomycete fungus Alternaria alternata causes early blight, one of economically the most important tomato diseases. Due to frequent use of fungicides, A. alternata has developed resistance with negative economic and environmental consequences. Research of new ways to control fungal pathogens has turned its eye to environmentally friendly chemicals with low toxicity such as boronic acids. The aim of our study was therefore to test the antifungal effects of phenylboronic and boric acid in vitro on A. alternata. We isolated the pathogen from a symptomatic tomato plant and determined the minimum inhibitory concentration of phenylboronic and boric acid on A. alternata mycelial growth using the poisoned food technique. The antifungal effect was tested on a wide range of phenylboronic and boric acid concentrations (from 0.04 % to 0.3 %) applied separately to agar with mycelial disc of the pathogen. After five days of incubation, phenylboronic acid at low concentration (0.05 %) completely inhibited mycelial growth. Boric acid, in turn, did not significantly slow down mycelial growth but did reduce sporulation and confirmed its fungistatic effect. Our findings point to the potential use of phenylboronic acid to control phytopathogenic fungi. This is, to our knowledge, the first report on its antifungal effect on an agriculturally important pathogen in vitro. Moreover, since A. alternata is also a human pathogen, these results may have clinical ramifications.


Assuntos
Antifúngicos , Solanum lycopersicum , Alternaria , Antifúngicos/farmacologia , Ácidos Bóricos/farmacologia , Humanos , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
3.
Pest Manag Sci ; 78(6): 2417-2422, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35301783

RESUMO

BACKGROUND: Phenylboronic acid (PBA) is an environmentally non-toxic substance with antimicrobial activity. Due to increasing ecological limitations in phytopharmacy and considering the development of resistance of phytopathogenic bacteria to available antibacterial agents, here we explore a possible role of PBA as an antibacterial agent of choice. RESULTS: We determined a minimal inhibitory concentration (MIC) of PBA in vitro on the Pseudomonas syringae pv. tomato (Pst) (0.5 mg/mL) and Erwinia amylovora (0.8 mg/mL), two of the most damaging plant pathogenic bacteria. In comparison, boric acid MIC was 2.5-6-fold higher than that of PBA, indicating enhanced antibacterial efficacy of the latter. Moreover, we determined the effect of PBA on cell growth and viability of both bacteria and have shown that PBA has bactericidal effect in concentrations > 1.0 mg/mL, whereas in lower concentration it is bacteriostatic. In addition, we have shown that PBA impairs Pst ability to cause symptoms on tomato plants in a dose-dependent manner, whereas solely applied PBA did not affect plant morphology at bactericidal concentrations. CONCLUSION: We report, for the first time, that PBA is a suitable agent for controlling phytopathogenic bacteria. PBA has bacteriostatic activity in lower, and bactericidal activity in higher (> 1.0 mg/mL) concentrations. When applied on tomato plants, PBA managed to suppress symptoms caused by Pst, while having no adverse effect on plants at the bactericidal concentrations. As an additional benefit, PBA is environmentally friendly. © 2022 Society of Chemical Industry.


Assuntos
Doenças das Plantas , Solanum lycopersicum , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias , Ácidos Borônicos , Testes de Sensibilidade Microbiana , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Plantas/microbiologia , Pseudomonas syringae
4.
Antibiotics (Basel) ; 11(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35326783

RESUMO

Finding a suitable alternative to the small pool of existing antifungal agents is a vital task in contemporary agriculture. Therefore, intensive research has been conducted globally to uncover environmentally friendly and efficient agents that can suppress pathogens resistant to the currently used antimycotics. Here, we tested the activity of boric acid (BA) and its derivative phenylboronic acid (PBA) in controlling the early blight symptoms in tomato plants infected with pathogenic fungus Alternaria alternata. By following the appearance and intensity of the lesions on leaves of the tested plants, as well as by measuring four selected physiological factors that reflect plant health, we have shown that both BA and PBA act prophylactically on fungal infection. They did it by reducing the amount and severity of early blight symptoms, as well as by preventing deterioration of the physiological traits, occurring upon fungal inoculation. Phenylboronic acid was more efficient in suppressing the impact of A. alternata infection. Therefore, we conclude that BA, and even more so PBA, may be used as agents for controlling early blight on tomato plants, as they are both quite effective and environmentally friendly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA