Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36836389

RESUMO

The dermatophyte Trichophyton rubrum is responsible for most human cutaneous infections. Its treatment is complex, mainly because there are only a few structural classes of fungal inhibitors. Therefore, new strategies addressing these problems are essential. The development of new drugs is time-consuming and expensive. The repositioning of drugs already used in medical practice has emerged as an alternative to discovering new drugs. The antidepressant sertraline (SRT) kills several important fungal pathogens. Accordingly, we investigated the inhibitory mechanism of SRT in T. rubrum to broaden the knowledge of its impact on eukaryotic microorganisms and to assess its potential for future use in dermatophytosis treatments. We performed next-generation sequencing (RNA-seq) to identify the genes responding to SRT at the transcript level. We identified that a major effect of SRT was to alter expression for genes involved in maintaining fungal cell wall and plasma membrane stability, including ergosterol biosynthetic genes. SRT also altered the expression of genes encoding enzymes related to fungal energy metabolism, cellular detoxification, and defense against oxidative stress. Our findings provide insights into a specific molecular network interaction that maintains metabolic stability and is perturbed by SRT, showing potential targets for its strategic use in dermatophytosis.

2.
J Fungi (Basel) ; 8(8)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-36012803

RESUMO

Trichophyton rubrum is responsible for several superficial human mycoses. Novel strategies aimed at controlling this pathogen are being investigated. The objective of this study was to evaluate the antifungal activity of the antidepressant sertraline (SRT), either alone or in combination with caspofungin (CASP). We calculated the minimum inhibitory concentrations of SRT and CASP against T. rubrum. Interactions between SRT and CASP were evaluated using a broth microdilution chequerboard. We assessed the differential expression of T. rubrum cultivated in the presence of SRT or combinations of SRT and CASP. We used MTT and violet crystal assays to compare the effect of SRT alone on T. rubrum biofilms with that of the synergistic combination of SRT and CASP. A human nail infection assay was performed. SRT alone, or in combination with CASP, exhibited antifungal activity against T. rubrum. SRT targets genes involved in the biosyntheses of cell wall and ergosterol. Furthermore, the metabolic activity of the T. rubrum biofilm and its biomass were affected by SRT and the combination of SRT and CASP. SRT alone, or in combination, shows potential as an approach to minimise resistance and reduce virulence.

3.
J Fungi (Basel) ; 8(8)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36012866

RESUMO

Dermatophytes are challenging to treat because they have developed many strategies to neutralize the stress triggered by antifungals. Drug tolerance is achieved by mechanisms such as drug efflux and biofilm formation, and cellular efflux is a consequence of the synergistic and compensatory regulation of efflux pumps. Alternative splicing (AS) has also been considered as a mechanism that enhances fungal adaptive responses. We used RNA-seq data from the dermatophyte Trichophyton rubrum exposed to undecanoic acid (UDA) to search for and validate AS in genes encoding efflux pumps. The magnitude of this phenomenon was evaluated using UDA and other antifungals (caspofungin, itraconazole, and terbinafine) in planktonic and biofilm cultures. In addition to the conventional isoforms, the efflux pump encoded by TERG_04309 presented two intron-retained isoforms. Biofilms trigger the simultaneous production of at least two isoforms. The intron-retained isoforms showed short lengths and topologically different organization. Furthermore, we identified the putative interaction of efflux pumps (TERG_04309 and TERG_04224). Co-expression of these genes suggests a synergistic action in antifungal resistance. Our data provide new insights into drug tolerance related to differential isoform usage and the co-expression of stress-responsive genes, which may lead to higher antifungal resistance, mainly in biofilms.

4.
Front Fungal Biol ; 3: 858968, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37746184

RESUMO

The growth and development of organisms depend on nutrient availability. Dermatophytes must sense nutrient levels and adapt to the host environment to colonize human and animal keratinized tissues. Owing to the clinical importance of the Trichophyton genus, this study compared the expression profile of genes involved in metabolism, cell cycle control, and proteases in two Trichophyton species, Trichophyton rubrum, and Trichophyton interdigitale, in response to nutrients and environmental pH. In addition, we evaluated the activity of enzymes in the tricarboxylic acid, glyoxylate, and methylcitrate cycles. Moreover, the effects of interruption of the transcription factor pacC on T. interdigitale in the same conditions as for the wild-type strain were determined. Our analyses revealed specific responses in each species to the nutritional and pH variation. An improved adaptation of T. interdigitale to keratin was observed, compared with that of T. rubrum. T. rubrum growth in buffered keratin media indicated pH 8.0 as an optimal pH condition for metabolic activity, which differed from that for T. interdigitale. Tricarboxylic acid components in T. rubrum showed increased enzymatic activity and transcript accumulation. In T. interdigitale, a higher activity of enzymes in glyoxylate and methylcitrate cycles was observed, with no direct correlation to the transcriptional profile. T. interdigitale fungal metabolism suggests the requirement of anaplerotic pathways in the late cultivation period. The identified differences between T. rubrum and T. interdigitale may represent determinants for adaptation to the host and the incidence of infection with each species.

5.
J Fungi (Basel) ; 7(8)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34436168

RESUMO

The burden of fungal infections is not widely appreciated. Although these infections are responsible for over one million deaths annually, it is estimated that one billion people are affected by severe fungal diseases. Mycoses of nails and skin, primarily caused by fungi known as dermatophytes, are the most common fungal infections. Trichophyton rubrum appears to be the most common causative agent of dermatophytosis, followed by Trichophyton interdigitale. An estimated 25% of the world's population suffers from dermatomycosis. Although these infections are not lethal, they compromise the quality of life of infected patients. The outcome of antidermatophytic treatments is impaired by various conditions, such as resistance and tolerance of certain dermatophyte strains. The adage "know your enemy" must be the focus of fungal research. There is an urgent need to increase awareness about the significance of these infections with precise epidemiological data and to improve knowledge regarding fungal biology and pathogenesis, with an emphasis on adaptive mechanisms to tackle adverse conditions from host counteractions. This review outlines the current knowledge about dermatophyte infections, with a focus on signaling pathways required for fungal infection establishment and a broad perspective on cellular and molecular factors involved in antifungal resistance and tolerance.

6.
Front Cell Infect Microbiol ; 11: 643659, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34169004

RESUMO

Fungal infections represent a significant concern worldwide, contributing to human morbidity and mortality. Dermatophyte infections are among the most significant mycoses, and Trichophyton rubrum appears to be the principal causative agent. Thus, an understanding of its pathophysiology is urgently required. Several lines of evidence have demonstrated that the APSES family of transcription factors (Asm1p, Phd1p, Sok2p, Efg1p, and StuA) is an important point of vulnerability in fungal pathogens and a potential therapeutic target. These transcription factors are unique to fungi, contributing to cell differentiation and adaptation to environmental cues and virulence. It has recently been demonstrated that StuA plays a pleiotropic role in dermatophyte pathophysiology. It was suggested that it functions as a mediator of crosstalk between different pathways that ultimately contribute to adaptive responses and fungal-host interactions. The complex regulation of StuA and its interaction pathways are yet to be unveiled. Thus, this study aimed to gain a deeper understanding of StuA-regulated processes in T. rubrum by assessing global gene expression following growth on keratin or glucose sources. The data showed the involvement of StuA in biological processes related to central carbon metabolism and glycerol catabolism, reactive oxygen species metabolism, and cell wall construction. Changes in carbohydrate metabolism may be responsible for the significant alteration in cell wall pattern and consequently in cell-cell interaction and adhesion. Loss of StuA led to impaired biofilm production and promoted proinflammatory cytokine secretion in a human keratinocyte cell line. We also observed the StuA-dependent regulation of catalase genes. Altogether, these data demonstrate the multitude of regulatory targets of StuA with a critical role in central metabolism that may ultimately trigger a cascade of secondary effects with substantial impact on fungal physiology and virulence traits.


Assuntos
Arthrodermataceae , Arthrodermataceae/metabolismo , Adesão Celular , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Humanos , Imunomodulação , Trichophyton
7.
Mycopathologia ; 186(3): 327-340, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33835367

RESUMO

Treating fungal infections is challenging and frequently requires long-term courses of antifungal drugs. Considering the limited number of existing antifungal drugs, it is crucial to evaluate the possibility of repositioning drugs with antifungal properties and to revisit older antifungals for applications in combined therapy, which could widen the range of therapeutic possibilities. Undecanoic acid is a saturated medium-chain fatty acid with known antifungal effects; however, its antifungal properties have not been extensively explored. Recent advances indicate that the toxic effect of undecanoic acid involves modulation of fungal metabolism through its effects on the expression of fungal genes that are critical for virulence. Additionally, undecanoic acid is suitable for chemical modification and might be useful in synergic therapies. This review highlights the use of undecanoic acid in antifungal treatments, reinforcing its known activity against dermatophytes. Specifically, in Trichophyton rubrum, against which the activity of undecanoic acid has been most widely studied, undecanoic acid elicits profound effects on pivotal processes in the cell wall, membrane assembly, lipid metabolism, pathogenesis, and even mRNA processing. Considering the known antifungal activities and associated mechanisms of undecanoic acid, its potential use in combination therapy, and the ability to modify the parent compound structure, undecanoic acid shows promise as a novel therapeutic against fungal infections.


Assuntos
Micoses , Antifúngicos , Arthrodermataceae , Ácidos Graxos , Humanos , Testes de Sensibilidade Microbiana
8.
Front Microbiol ; 10: 2168, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608026

RESUMO

The fungal cell wall is a structure in constant contact with the external environment. It confers shape to the cell and protects it from external threats. During host adaptation, the cell wall structure of fungal pathogens is continuously reshaped by the orchestrated action of numerous genes. These genes respond to environmental stresses and challenging growth conditions, influencing the infective potential of the fungus. Here, we aimed to identify cell wall biosynthesis-related genes that putatively encode virulence factors in Trichophyton rubrum. We used RNA-seq to examine the impact of two drugs, namely undecanoic acid, and acriflavine as well as the effects of the carbon source switching from glucose to keratin on T. rubrum cell wall metabolism. By using functional annotation based on Gene Ontology terms, we identified significantly differentially expressed cell wall-related genes in all stress conditions. We also exposed T. rubrum to osmotic and other cell wall stressors and evaluated the susceptibility and gene modulation in response to stress. The changes in the ambient environment caused continuous cell wall remodeling, forcing the fungus to undergo modulatory restructuring. The influence of the external challenges indicated a highly complex response pattern. The genes that were modulated simultaneously in the three stress conditions highlight potential targets for antifungal development.

9.
Front Microbiol ; 9: 1108, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896175

RESUMO

Dermatophytes comprise pathogenic fungi that have a high affinity for the keratinized structures present in nails, skin, and hair, causing superficial infections known as dermatophytosis. A reasonable number of antifungal drugs currently exist on the pharmaceutical market to control mycoses; however, their cellular targets are restricted, and fungi may exhibit tolerance or resistance to these agents. For example, the stress caused by antifungal and cytotoxic drugs in sub-inhibitory concentrations promotes compensatory stress responses, with the over-expression of genes involved in cellular detoxification, drug efflux, and signaling pathways being among the various mechanisms that may contribute to drug tolerance. In addition, the ATP-binding cassette transporters in dermatophytes that are responsible for cellular efflux can act synergistically, allowing one to compensate for the absence of the other, revealing the complexity of drug tolerance phenomena. Moreover, mutations in genes coding for target enzymes could lead to substitutions in amino acids involved in the binding of antifungal agents, hindering their performance and leading to treatment failure. The relevance of each one of these mechanisms of resistance to fungal survival is hard to define, mainly because they can act simultaneously in the cell. However, an understanding of the molecular mechanisms involved in the resistance/tolerance processes, the identification of new antifungal targets, as well as the prospective of new antifungal compounds among natural or synthetic products, are expected to bring advances and new insights that facilitate the improvement or development of novel strategies for antifungal therapy.

10.
PLoS One ; 13(4): e0195871, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29668735

RESUMO

Advances in the understanding of molecular systems depend on specific tools like the disruption of genes to produce strains with the desired characteristics. The disruption of any mutagen sensitive (mus) genes in the model fungus Neurospora crassa, i.e. mus-51, mus-52, or mus-53, orthologous to the human genes KU70, KU80, and LIG4, respectively, provides efficient tools for gene targeting. Accordingly, we used RNA-sequencing and reverse transcription-quantitative polymerase chain reaction amplification techniques to evaluate the effects of mus-52 deletion in N. crassa gene transcriptional modulation, and thus, infer its influence regarding metabolic response to extracellular availability of inorganic phosphate (Pi). Notably, the absence of MUS-52 affected the transcription of a vast number of genes, highlighting the expression of those coding for transcription factors, kinases, circadian clocks, oxi-reduction balance, and membrane- and nucleolus-related proteins. These findings may provide insights toward the KU molecular mechanisms, which have been related to telomere maintenance, apoptosis, DNA replication, and gene transcription regulation, as well as associated human conditions including immune system disorders, cancer, and aging.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutação , Neurospora crassa/genética , Neurospora crassa/metabolismo , Biologia Computacional/métodos , Metabolismo Energético/genética , Espaço Extracelular/metabolismo , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Anotação de Sequência Molecular , Fosfatos/metabolismo , Reprodutibilidade dos Testes , Transcrição Gênica
11.
Curr Genomics ; 17(2): 99-111, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27226766

RESUMO

Heat shock proteins (HSPs) are proteins whose transcription responds rapidly to temperature shifts. They constitute a family of molecular chaperones, involved in the proper folding and stabilisation of proteins under physiological and adverse conditions. HSPs also assist in the protection and recovery of cells exposed to a variety of stressful conditions, including heat. The role of HSPs extends beyond chaperoning proteins, as they also participate in diverse cellular functions, such as the assembly of macromolecular complexes, protein transport and sorting, dissociation of denatured protein aggregates, cell cycle control, and programmed cell death. They are also important antigens from a variety of pathogens, are able to stimulate innate immune cells, and are implicated in acquired immunity. In fungi, HSPs have been implicated in virulence, dimorphic transition, and drug resistance. Some HSPs are potential targets for therapeutic strategies. In this review, we discuss the current understanding of HSPs in dermatophytes, which are a group of keratinophilic fungi responsible for superficial mycoses in humans and animals. Computational analyses were performed to characterise the group of proteins in these dermatophytes, as well as to assess their conservation and to identify DNA-binding domains (5'-nGAAn-3') in the promoter regions of the hsp genes. In addition, the quantification of the transcript levels of few genes in a pacC background helped in the development of an extended model for the regulation of the expression of the hsp genes, which supports the participation of the pH-responsive transcriptional regulator PacC in this process.

12.
Front Microbiol ; 6: 1241, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26617583

RESUMO

Treatment of fungal infections is difficult due to several reasons, such as side effects of drugs, emergence of resistant strains, and limited number of molecular targets for the drug compounds. In fungi, heat shock proteins (Hsps) have been implicated in several processes with the conserved molecular chaperone Hsp90 emerging as a potential target for antifungal therapy. It plays key cellular roles by eliciting molecular response to environmental changes, morphogenesis, antifungal resistance, and fungal pathogenicity. Here, we evaluated the transcription profiles of hsp genes of the most prevalent dermatophyte Trichophyton rubrum in response to different environmental challenges including nutrient availability, interaction with cells and molecules of the host tissue, and drug exposure. The results suggest that each Hsp responds to a specific stress condition and that the cohort of Hsps facilitates fungal survival under various environmental challenges. Chemical inhibition of Hsp90 resulted in increased susceptibility of the fungus to itraconazole and micafungin, and decreased its growth in human nails in vitro. Moreover, some hsp and related genes were modulated by Hsp90 at the transcriptional level. We are suggesting a role of Hsp90 in the pathogenicity and drug susceptibility of T. rubrum as well as the regulation of other Hsps. The synergism observed between the inhibition of Hsp90 and the effect of itraconazole or micafungin in reducing the fungal growth is of great interest as a novel and potential strategy to treat dermatophytoses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA