Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(5): 1142-1147.e6, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38350445

RESUMO

Directly observing the chronology and tempo of adaptation in response to ecological change is rarely possible in natural ecosystems. Sedimentary ancient DNA (sedaDNA) has been shown to be a tractable source of genome-scale data of long-dead organisms1,2,3 and to thereby potentially provide an understanding of the evolutionary histories of past populations.4,5 To date, time series of ecosystem biodiversity have been reconstructed from sedaDNA, typically using DNA metabarcoding or shotgun sequence data generated from less than 1 g of sediment.6,7 Here, we maximize sequence coverage by extracting DNA from ∼50× more sediment per sample than the majority of previous studies1,2,3 to achieve genotype resolution. From a time series of Late Pleistocene sediments spanning from a marine to freshwater ecosystem, we compare adaptive genotypes reconstructed from the environmental genomes of three-spined stickleback at key time points of this transition. We find a staggered temporal dynamic in which freshwater alleles at known loci of large effect in marine-freshwater divergence of three-spined stickleback (e.g., EDA)8 were already established during the brackish phase of the formation of the isolation basin. However, marine alleles were still detected across the majority of marine-freshwater divergence-associated loci, even after the complete isolation of the lake from marine ingression. Our retrospective approach to studying adaptation from environmental genomes of three-spined sticklebacks at the end of the last glacial period complements contemporary experimental approaches9,10,11 and highlights the untapped potential for retrospective "evolve and resequence" natural experiments using sedaDNA.


Assuntos
Ecossistema , Smegmamorpha , Animais , Adaptação Fisiológica/genética , Smegmamorpha/genética , Estudos Retrospectivos , Lagos
2.
Ecol Evol ; 13(8): e10404, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37546572

RESUMO

The taxonomic status of the now likely extirpated Korean Peninsula wolf has been extensively debated, with some arguing it represents an independent wolf lineage, Canis coreanus. To investigate the Korean wolf's genetic affiliations and taxonomic status, we sequenced and analysed the genomes of a Korean wolf dated to the beginning of the 20th century, and a captive wolf originally from the Pyongyang Central Zoo. Our results indicated that the Korean wolf bears similar genetic ancestry to other regional East Asian populations, therefore suggesting it is not a distinct taxonomic lineage. We identified regional patterns of wolf population structure and admixture in East Asia with potential conservation consequences in the Korean Peninsula and on a regional scale. We find that the Korean wolf has similar genomic diversity and inbreeding to other East Asian wolves. Finally, we show that, in contrast to the historical sample, the captive wolf is genetically more similar to wolves from the Tibetan Plateau; hence, Korean wolf conservation programmes might not benefit from the inclusion of this specimen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA