Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 594, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683374

RESUMO

BACKGROUND: Metacaspases comprise a family of cysteine proteases implicated in both cell death and cell differentiation of protists that has been considered a potential drug target for protozoan parasites. However, the biology of metacaspases in Plasmodium vivax - the second most prevalent and most widespread human malaria parasite worldwide, whose occurrence of chemoresistance has been reported in many endemic countries, remains largely unexplored. Therefore, the present study aimed to address, for the first time, the expression pattern of metacaspases in P. vivax parasites. METHODS AND RESULTS: P. vivax blood-stage parasites were obtained from malaria patients in the Brazilian Amazon and the expression of the three putative P. vivax metacaspases (PvMCA1-3) was detected in all isolates by quantitative PCR assay. Of note, the expression levels of each PvMCA varied noticeably across isolates, which presented different frequencies of parasite forms, supporting that PvMCAs may be expressed in a stage-specific manner as previously shown in P. falciparum. CONCLUSION: The detection of metacaspases in P. vivax blood-stage parasites reported herein, allows the inclusion of these proteases as a potential candidate drug target for vivax malaria, while further investigations are still required to evaluate the activity, role and essentiality of metacaspases in P. vivax biology.


Assuntos
Malária Vivax , Plasmodium vivax , Proteínas de Protozoários , Plasmodium vivax/genética , Plasmodium vivax/isolamento & purificação , Brasil , Humanos , Malária Vivax/parasitologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Caspases/genética , Caspases/metabolismo , Expressão Gênica/genética
2.
Microorganisms ; 10(5)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35630348

RESUMO

Signal regulatory protein α (SIRPα) is an immunoreceptor expressed in myeloid innate immune cells that signals for inhibition of both phagocytosis and inflammatory response. Malaria parasites have evolutionarily selected multiple mechanisms that allow them to evade host immune defenses, including the modulation of cells belonging to innate immunity. Notwithstanding, little attention has been given to SIRPα in the context of immunosuppressive states induced by malaria. The present study attempted to investigate if malaria parasites are endowed with the capacity of modulating the expression of SIRPα on cells of innate immune system. Human peripheral blood mononuclear cells (PBMC) from healthy individuals were incubated in the presence of lipopolysaccharide (LPS) or crude extracts of P. falciparum or P. vivax and then, the expression of SIRPα was evaluated by flow cytometry. As expected, LPS showed an inhibitory effect on the expression of SIRPα in the population of monocytes, characterized by cell morphology in flow cytometry analysis, while Plasmodium extracts induced a significant positive modulation. Additional phenotyping of cells revealed that the modulatory potential of Plasmodium antigens on SIRPα expression was restricted to the population of monocytes (CD14+CD11c+), as no effect on myeloid dendritic cells (CD14-CD11c+) was observed. We hypothesize that malaria parasites explore inhibitory signaling of SIRPα to suppress antiparasitic immune responses contributing to the establishment of infection. Nevertheless, further studies are still required to better understand the role of SIRPα modulation in malaria immunity and pathogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA