Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 12(1): 81, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715147

RESUMO

BACKGROUND: After two decades of extensive microbiome research, the current forefront of scientific exploration involves moving beyond description and classification to uncovering the intricate mechanisms underlying the coalescence of microbial communities. Deciphering microbiome assembly has been technically challenging due to their vast microbial diversity but establishing a synthetic community (SynCom) serves as a key strategy in unravelling this process. Achieving absolute quantification is crucial for establishing causality in assembly dynamics. However, existing approaches are primarily designed to differentiate a specific group of microorganisms within a particular SynCom. RESULTS: To address this issue, we have developed the differential fluorescent marking (DFM) strategy, employing three distinguishable fluorescent proteins in single and double combinations. Building on the mini-Tn7 transposon, DFM capitalises on enhanced stability and broad applicability across diverse Proteobacteria species. The various DFM constructions are built using the pTn7-SCOUT plasmid family, enabling modular assembly, and facilitating the interchangeability of expression and antibiotic cassettes in a single reaction. DFM has no detrimental effects on fitness or community assembly dynamics, and through the application of flow cytometry, we successfully differentiated, quantified, and tracked a diverse six-member SynCom under various complex conditions like root rhizosphere showing a different colonisation assembly dynamic between pea and barley roots. CONCLUSIONS: DFM represents a powerful resource that eliminates dependence on sequencing and/or culturing, thereby opening new avenues for studying microbiome assembly. Video Abstract.


Assuntos
Elementos de DNA Transponíveis , Microbiota , Rizosfera , Plasmídeos/genética , Raízes de Plantas/microbiologia , Proteobactérias/genética , Citometria de Fluxo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microbiologia do Solo
3.
Nat Commun ; 15(1): 3436, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653767

RESUMO

Symbiosis with soil-dwelling bacteria that fix atmospheric nitrogen allows legume plants to grow in nitrogen-depleted soil. Symbiosis impacts the assembly of root microbiota, but it is unknown how the interaction between the legume host and rhizobia impacts the remaining microbiota and whether it depends on nitrogen nutrition. Here, we use plant and bacterial mutants to address the role of Nod factor signaling on Lotus japonicus root microbiota assembly. We find that Nod factors are produced by symbionts to activate Nod factor signaling in the host and that this modulates the root exudate profile and the assembly of a symbiotic root microbiota. Lotus plants with different symbiotic abilities, grown in unfertilized or nitrate-supplemented soils, display three nitrogen-dependent nutritional states: starved, symbiotic, or inorganic. We find that root and rhizosphere microbiomes associated with these states differ in composition and connectivity, demonstrating that symbiosis and inorganic nitrogen impact the legume root microbiota differently. Finally, we demonstrate that selected bacterial genera characterizing state-dependent microbiomes have a high level of accurate prediction.


Assuntos
Lotus , Microbiota , Nitrogênio , Raízes de Plantas , Transdução de Sinais , Simbiose , Lotus/microbiologia , Lotus/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Microbiota/fisiologia , Rizosfera , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Microbiologia do Solo , Fixação de Nitrogênio , Exsudatos de Plantas/metabolismo
4.
Environ Microbiol ; 24(11): 5524-5533, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36054464

RESUMO

The plant common symbiosis signalling (SYM) pathway has shared function between interactions with rhizobia and arbuscular mycorrhizal fungi, the two most important symbiotic interactions between plants and microorganisms that are crucial in plant and agricultural yields. Here, we determine the role of the plant SYM pathway in the structure and abundance of the microbiota in the model legume Medicago truncatula and whether this is controlled by the nitrogen or phosphorus status of the plant. We show that SYM mutants (dmi3) differ substantially from the wild type (WT) in the absolute abundance of the root microbiota, especially under nitrogen limitation. Changes in the structure of the microbiota were less pronounced and depended on both plant genotype and nutrient status. Thus, the SYM pathway has a major impact on microbial abundance in M. truncatula and also subtly alters the composition of the microbiota.


Assuntos
Medicago truncatula , Microbiota , Micorrizas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Fixação de Nitrogênio/genética , Proteínas de Plantas/metabolismo , Micorrizas/genética , Micorrizas/metabolismo , Simbiose/genética , Nitrogênio/metabolismo , Microbiota/genética , Raízes de Plantas/microbiologia , Regulação da Expressão Gênica de Plantas , Nodulação/genética
5.
Proc Natl Acad Sci U S A ; 116(31): 15735-15744, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31311863

RESUMO

Plants in their natural ecosystems interact with numerous microorganisms, but how they influence their microbiota is still elusive. We observed that sulfatase activity in soil, which can be used as a measure of rhizosphere microbial activity, is differently affected by Arabidopsis accessions. Following a genome-wide association analysis of the variation in sulfatase activity we identified a candidate gene encoding an uncharacterized cytochrome P450, CYP71A27 Loss of this gene resulted in 2 different and independent microbiota-specific phenotypes: A lower sulfatase activity in the rhizosphere and a loss of plant growth-promoting effect by Pseudomonas sp. CH267. On the other hand, tolerance to leaf pathogens was not affected, which agreed with prevalent expression of CYP71A27 in the root vasculature. The phenotypes of cyp71A27 mutant were similar to those of cyp71A12 and cyp71A13, known mutants in synthesis of camalexin, a sulfur-containing indolic defense compound. Indeed, the cyp71A27 mutant accumulated less camalexin in the roots upon elicitation with silver nitrate or flagellin. Importantly, addition of camalexin complemented both the sulfatase activity and the loss of plant growth promotion by Pseudomonas sp. CH267. Two alleles of CYP71A27 were identified among Arabidopsis accessions, differing by a substitution of Glu373 by Gln, which correlated with the ability to induce camalexin synthesis and to gain fresh weight in response to Pseudomonas sp. CH267. Thus, CYP71A27 is an additional component in the camalexin synthesis pathway, contributing specifically to the control of plant microbe interactions in the root.


Assuntos
Arabidopsis , Sistema Enzimático do Citocromo P-450 , Indóis/metabolismo , Raízes de Plantas , Pseudomonas/metabolismo , Tiazóis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Mutação , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia
6.
Mol Plant Microbe Interact ; 31(8): 803-813, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29457542

RESUMO

The ability of microorganisms to use root-derived metabolites as growth substrates is a key trait for success in the rhizospheric niche. However, few studies describe which specific metabolites are consumed or to what degree microbial strains differ in their substrate consumption patterns. Here, we present a liquid chromatography-mass spectrometry (MS) exometabolomic study of three bacterial strains cultivated using either glucose or Arabidopsis thaliana root extract as the sole carbon source. Two of the strains were previously isolated from field-grown Arabidopsis roots, the other is Escherichia coli, included as a comparison. When cultivated on root extract, a set of 62 MS features were commonly taken up by all three strains, with m/z values matching components of central metabolism (including amino acids and purine or pyrimidine derivatives). Escherichia coli took up very few MS features outside this commonly consumed set, whereas the root-inhabiting strains took up a much larger number of MS features, many with m/z values matching plant-specific metabolites. These measurements define the metabolic niche that each strain potentially occupies in the rhizosphere. Furthermore, we document many MS features released by these strains that could play roles in cross-feeding, antibiosis, or signaling. We present our methodological approach as a foundation for future studies of rhizosphere exometabolomics.


Assuntos
Arabidopsis/química , Bactérias/metabolismo , Carbono/metabolismo , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Bactérias/genética , Carbono/química , Cromatografia Líquida , Regulação Bacteriana da Expressão Gênica/fisiologia , Glucose/metabolismo , Espectrometria de Massas , Metabolômica , Extratos Vegetais/química , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA