Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 229(1): 199-212, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32772381

RESUMO

Drought-induced tree mortality frequently occurs in patches with different spatial and temporal distributions, which is only partly explained by inter- and intraspecific variation in drought tolerance. We investigated whether bedrock properties, with special reference to rock water storage capacity, affects tree water status and drought response in a rock-dominated landscape. We measured primary porosity and available water content of breccia (B) and dolostone (D) rocks. Saplings of Fraxinus ornus were grown in pots filled with soil or soil mixed with B and D rocks, and subjected to an experimental drought. Finally, we measured seasonal changes in water status of trees in field sites overlying B or D bedrock. B rocks were more porous and stored more available water than D rocks. Potted saplings grown with D rocks had less biomass and suffered more severe water stress than those with B rocks. Trees in sites with B bedrock had more favourable water status than those on D bedrock which also suffered drought-induced canopy dieback. Bedrock represents an important water source for plants under drought. Different bedrock features translate into contrasting below-ground water availability, leading to landscape-level heterogeneity of the impact of drought on tree water status and dieback.


Assuntos
Árvores , Água , Secas , Estações do Ano , Solo
2.
Int J Mol Sci ; 21(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212767

RESUMO

The foreseen increase in evaporative demand and reduction in rainfall occurrence are expected to stress the abiotic constrains of drought and salt concentration in soil. The intensification of abiotic stresses coupled with the progressive depletion in water pools is a major concern especially in viticulture, as most vineyards rely on water provided by rainfall. Because its economical relevance and its use as a model species for the study of abiotic stress effect on perennial plants, a significant amount of literature has focused on Vitis vinifera, assessing the physiological mechanisms occurring under stress. Despite the complexity of the stress-resistance strategy of grapevine, the ensemble of phenomena involved seems to be regulated by the key hormone abscisic acid (ABA). This review aims at summarizing our knowledge on the role of ABA in mediating mechanisms whereby grapevine copes with abiotic stresses and to highlight aspects that deserve more attention in future research.


Assuntos
Ácido Abscísico/metabolismo , Estresse Salino , Vitis/metabolismo , Desidratação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA