Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Pathogens ; 13(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38787231

RESUMO

The presence of enteric pathogens in produce can serve as a significant means of transmitting infections to consumers. Notably, tomatoes, as a type of produce, have been implicated in outbreaks caused by various human pathogens, such as Salmonella enterica and pathogenic Escherichia coli. However, the survival characteristics of Shigella spp. in tomatoes have not been thoroughly investigated. In this study, we assess the survival of S. flexneri 2a in two distinct varieties of post-harvested tomatoes. S. flexneri 2a was used to inoculate both regular-sized Vine tomatoes and cherry-type Mini Plum tomatoes. Our findings reveal no significant difference in Shigella survival in the pericarp of both varieties on day 2 post-inoculation. However, a significant disparity emerges on day 6, where all recovered Shigella colonies exclusively belong to the Mini Plum variety, with none associated with the Vine type. When Shigella was inoculated into the locular cavity (deep inoculation), no significant difference between varieties was observed. Additionally, we investigate the potential role of the SRL pathogenicity island (SRL PAI) in the survival and fitness of S. flexneri 2a in post-harvested tomatoes. Our results indicate that while the SRL PAI is not linked to the survival of the strains in tomato, it does impact their fitness. These findings underscore the variability in Shigella strains' survival capabilities depending on the tomato variety, highlighting the importance of understanding Shigella ecology beyond the human host and identifying molecular determinants influencing bacterial survival to mitigate the risk of future outbreaks. The significance of this data on Shigella persistence in fresh vegetables should not be underestimated, as even a small number of Shigella cells can pose a threat to the health of individuals.

2.
Anim Microbiome ; 6(1): 13, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486253

RESUMO

BACKGROUND: The seafood consumption and trade have increased over the years, and along its expected expansion pose major challenges to the seafood industry and government institutions. In particular, the global trade in fish products and the consequent consumption are linked to reliable authentication, necessary to guarantee lawful trade and healthy consumption. Alterations or errors in this process can lead to commercial fraud and/or health threats. Consequently, the development of new investigative tools became crucial in ensuring unwanted scenarios. Here we used NGS techniques through targeted metagenomics approach on the V3-V4 region of the 16S rRNA genes to characterize the gill bacterial communities in wild-caught seabream (Sparus aurata) and seabass (Dicentrarchus labrax) within different fisheries areas of the "Costa degli Etruschi'' area in the Tuscan coast. Our challenge involved the possibility of discriminating between the microbiota of both fish species collected from three different fishing sites very close to each other (all within 100 km) in important areas from a commercial and tourist point of view. RESULTS: Our results showed a significant difference in the assembly of gill bacterial communities in terms of diversity (alpha and beta diversity) of both seabass and seabream in accordance with the three fishing areas. These differences were represented by a unique site -related bacterial signature, more evident in seabream compared to the seabass. Accordingly, the core membership of seabream specimens within the three different sites was minimal compared to the seabass which showed a greater number of sequence variants shared among the different fishing sites. Therefore, the LRT analysis highlighted the possibility of obtaining specific fish bacterial signatures associated with each site; it is noteworthy that specific taxa showed a unique association with the fishing site regardless of the fish species. This study demonstrates the effectiveness of target-metagenomic sequencing of gills in discriminating bacterial signatures of specimens collected from fishing areas located at a limited distance to each other. CONCLUSIONS: This study provides new information relating the structure of the gill microbiota of seabass and seabream in a fishing area with a crucial commercial and tourist interest, namely "Costa degli Etruschi". This study demonstrated that microbiome-based approaches can represent an important tool for validating the seafood origins with a central applicative perspective in the seafood traceability system.

3.
J Fungi (Basel) ; 9(6)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37367601

RESUMO

Meristematic black fungi are a highly damaging group of microorganisms responsible for the deterioration of outdoor exposed monuments. Their resilience to various stresses poses significant challenges for removal efforts. This study focuses on the community of meristematic fungi inhabiting the external white marble of the Cathedral of Santa Maria del Fiore, where they contribute to its darkening. Twenty-four strains were isolated from two differently exposed sites of the Cathedral, and their characterization was conducted. Phylogenetic analysis using ITS and LSU rDNA regions revealed a wide diversity of rock-inhabiting fungal strains within the sampled areas. Eight strains, belonging to different genera, were also tested for thermal preferences, salt tolerance, and acid production to investigate their tolerance to environmental stressors and their interaction with stone. All tested strains were able to grow in the range of 5-30 °C, in the presence 5% NaCl, and seven out of eight strains were positive for the production of acid. Their sensitivities to essential oils of thyme and oregano and to the commercial biocide Biotin T were also tested. The essential oils were found to be the most effective against black fungi growth, indicating the possibility of developing a treatment with a low environmental impact.

4.
Mycotoxin Res ; 39(3): 165-175, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37165150

RESUMO

Breakfast processed products are remarkably at risk of fungal contamination. This research surveyed the fumonisins concentration in different breakfast products and carried out in vitro experiments measuring fumonisins content in different substrates inoculated with Fusarium verticillioides. The pipeline started with the identification of combinations of ingredients for 58 breakfast products. Twenty-three core ingredients, seven nutritional components and production types were analyzed using a Pearson correlation, k-means clustering, and principal component analysis to show that no single factor is responsible for high fumonisins detection in processed cereals products. Consequently, decision tree regression was used as a means of determining and visualizing complex logical interactions between the same factors. We clustered the association of ingredients in low, medium, and high risk of fumonisin detection. The analysis showed that high fumonisins concentration is associated with those products that have high maize concentrations coupled especially with high sodium or rice. In an in vitro experiment, different media were prepared by mixing the ingredients in the proportion found in the first survey and by measuring fumonisins production by Fusarium verticillioides. Results showed that (1) fumonisins production by F. verticillioides is boosted by the synergistic effect of maize and highly ready carbohydrate content such as white flour; (2) a combination of maize > 26% (w/w), rice > 2.5% (w/w), and NaCl > 2.2% (w/w) led to high fumonisins production, while mono-ingredient products were more protective against fumonisins production. The observations in the in vitro experiments appeared to align with the decision tree model that an increase in ingredient complexity can lead to fumonisins production by Fusarium. However, more research is urgently needed to develop the area of predictive mycology based on the association of processing, ingredients, fungal development, and mycotoxins production.


Assuntos
Ingredientes de Alimentos , Fumonisinas , Fusarium , Oryza , Fumonisinas/análise , Grão Comestível/química , Ingredientes de Alimentos/análise , Desjejum , Zea mays/microbiologia , Oryza/microbiologia
5.
Biology (Basel) ; 12(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37106833

RESUMO

Food contamination can be a serious concern for public health because it can be related to the severe spreading of pathogens. This is a main issue, especially in the case of fresh fruits and vegetables; indeed, they have often been associated with gastrointestinal outbreak events, due to contamination with pathogenic bacteria. However, little is known about the physiological adaptation and bacterial response to stresses encountered in the host plant. Thus, this work aimed to investigate the adaptation of a commensal E. coli strain while growing in tomato pericarp. Pre-adapted and non-adapted cells were compared and used to contaminate tomatoes, demonstrating that pre-adaptation boosted cell proliferation. DNA extracted from pre-adapted and non-adapted cells was sequenced, and their methylation profiles were compared. Hence, genes involved in cell adhesion and resistance against toxic compounds were identified as genes involved in adaptation, and their expression was compared in these two experimental conditions. Finally, pre-adapted and non-adapted E. coli were tested for their ability to resist the presence of toxic compounds, demonstrating that adaptation exerted a protective effect. In conclusion, this work provides new information about the physiological adaptation of bacteria colonizing the tomato fruit pericarp.

6.
Biology (Basel) ; 12(1)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36671794

RESUMO

Understanding the relation between the susceptibility of different leafy greens to human pathogen contamination and leaf traits can contribute to increase the food safety of the fresh vegetable industry. The aim of this research was to evaluate the susceptibility to E. coli ATCC 35218 attachment in 30 accessions of baby leaves, and to identify leaf traits potentially involved in the contamination. The accessions were surface inoculated with a bacterial suspension containing 1 × 107 cells/mL and the attachment was measured 1.5 h after inoculation. Significant differences in attachment were detected between the accessions for p ≤ 0.05. The three most and the three least susceptible accessions were selected and characterized for leaf micro-morphological traits (stomata density and size, surface roughness) and water content. Scanning electron microscopy was used to analyse the stomatal parameters. Roughness was measured by an innovative portable 3D digital microscope. No significant correlation between the attachment of E. coli ATCC 35218 and stomatal parameters was detected, while the attachment was positively correlated with roughness and water content. The E. coli ATCC 35218 population in surface-inoculated leaves was also measured after a UV treatment, which was found to be less effective in reducing bacterial contamination in the rougher leaves. This result suggested that roughness offers UV protection, further highlighting its impact on the microbiological safety of baby leafy greens.

7.
J Sci Food Agric ; 103(7): 3621-3627, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36377360

RESUMO

BACKGROUND: Pathogenic enterobacteria can travel through the plant vascular bundles by penetrating from cuts and persisting into ready-to-eat leafy greens. Because the cutting site is the main point of entrance and uptake, we tested how different cutting strategies can reduce bacterial internalization in leaves. Horizontal cuts at the base of the leaves were performed with two different types of tools: the first with a scalpel (by pulling the blade) and the second with a scissor-action that has blades that cuts by gliding against a thicker blade. Scissor-action generally makes closer border cuts. Blades of both types of tools have worked at 25 °C and 200 °C. The present study aimed to determine how these different types of cuts and temperatures affected bacterial uptake in leaves. Experiments were repeated on different plant genotypes and at different wilting stages. RESULTS: Our findings showed that cutting baby-leaves with a scissor action at 200 °C significantly reduced the bacterial uptake compared to the not heated (which simulates a mechanized lettuce harvester). The most effective cutting treatments for reducing bacterial uptake were in the order: scissor 200 °C > scissor 25 °C > scalpel 200 °C > scalpel 25 °C. The scissor heated at 200 °C also prevented bacterial uptake on wilted baby-leaves. CONCLUSION: The findings of the present study could provide a further contribution in terms of safety during harvest and suggest that a pre-heated blade supports safety during harvest of leafy greens. © 2022 Society of Chemical Industry.


Assuntos
Escherichia coli O157 , Contagem de Colônia Microbiana , Lactuca/microbiologia , Temperatura , Folhas de Planta/microbiologia , Microbiologia de Alimentos , Spinacia oleracea/microbiologia , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise
8.
Front Bioeng Biotechnol ; 10: 873384, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573226

RESUMO

Wound healing is slowed in Space. Microgravity and possible physical factors associated with Space affect alterations in fibroblast, matrix formation, dysregulation in apoptosis and inflammation. The microbial populations settled on skin, space modules, in space suits, are also playing a pivotal role, as wound healing is also affected by the microbial community. We propose a perspective that includes four domines for the application of human skin microbiota for wound healing in Space: The natural antimicrobial properties of the skin microbiota, the crosstalk of the skin microbiota with the immune system during wound healing, the contribution of the microbiota in precision medicine, and the role of gut-skin and gut-brain axes. A stronger understanding of the connections and metabolic network among bacteria, fungi, the host's immune system and the host metabolism will support the basis for a better wound healing in Space.

9.
Antibiotics (Basel) ; 11(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35453263

RESUMO

Cities that are densely populated are reservoirs of antibiotic resistant genes (ARGs). The overall presence of all resistance genes in a specific environment is defined as a resistome. Spatial proximity of surfaces and different hygienic conditions leads to the transfer of antibiotic resistant bacteria (ARB) within urban environments. Built environments, public transportation, green spaces, and citizens' behaviors all support persistence and transfer of antimicrobial resistances (AMR). Various unique aspects of urban settings that promote spread and resilience of ARGs/ARB are discussed: (i) the role of hospitals and recreational parks as reservoirs; (ii) private and public transportation as carriers of ARGs/ARB; (iii) the role of built environments as a hub for horizontal gene transfer even though they support lower microbial biodiversity than outdoor environments; (iv) the need to employ ecological and evolutionary concepts, such as modeling the fate of a specific ARG/ARB, to gain enhanced health risk assessments. Our understanding and our ability to control the rise of AMR in an urban setting is linked to our knowledge of the network connecting urban reservoirs and the environment.

10.
Antibiotics (Basel) ; 10(12)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34943732

RESUMO

Antibiotic resistance is one of the biggest threats to global health, food security and development. Urgent action is needed at all levels of society to reduce the impact and spread of antibiotic resistance. For a more sustaining approach, education in children, college students, citizens and caregivers are essential. The One-Heath approach is a collaborative, multisectoral and transdisciplinary strategy in which, no single organizations or sector can address the issue of antimicrobial resistance at the human-environment interface alone. Within this strategy, education plays a central role. In this scoping review, we highlighted a range of learning activities on antibiotic resistance as part of the One-Health approach. In particular, those applications that can be introduced to a wide audience to help arrest the current crisis for the next generation. The review identifies a high number of teaching opportunities: board and role-play games, round tables, musicals, e-learning and environmental experiments to couple with more curricula and formal education to inform a diverse group of audiences.

11.
Antibiotics (Basel) ; 10(9)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34572648

RESUMO

The pressing issue of the abundance of antibiotic resistance genes and resistant bacteria in the environment (ARGs and ARB, respectively) requires procedures for assessing the risk to health. The chemo-centric environmental risk assessment models identify hazard(s) in a dose-response manner, obtaining exposure, toxicity, risk, impact and policy. However, this risk assessment approach based on ARGs/ARB evaluation from a quantitative viewpoint shows high unpredictability because ARGs/ARB cannot be considered as standard hazardous molecules: ARB duplicate and ARGs evolve within a biological host. ARGs/ARB are currently listed as Contaminants of Emerging Concern (CEC). In light of such characteristics, we propose to define ARGs/ARB within a new category of evolving CEC (or e-CEC). ARGs/ARB, like any other evolving determinants (e.g., viruses, bacteria, genes), escape environmental controls. When they do so, just one molecule left remaining at a control point can form the origin of a new dangerous and selection-responsive population. As a consequence, perhaps it is time to acknowledge this trait and to include evolutionary concepts within modern risk assessment of e-CEC. In this perspective we analyze the evolutionary responses most likely to influence risk assessment, and we speculate on the means by which current methods could measure evolution. Further work is required to implement and exploit such experimental procedures in future risk assessment protocols.

13.
Microbiol Res ; 247: 126727, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33652267

RESUMO

The MinION single-molecule sequencing system has been attracting the attention of the community of microbiologists involved in the conservation of cultural heritage. The use of MinION for the conservation of cultural heritage is extremely recent, but surprisingly the only few applications available have been exploring many different substrates: stone, textiles, paintings and wax. The use of MinION sequencing is mainly used to address the metataxonomy (with special emphasis on non-cultivable microorganisms) with the effort to identify species involved in the degradation of the substrates. In this review, we show the current applications available on different artworks, showing how this technology can be a useful tool for microbiologists and conservators also in light of its low cost and the easy chemistry.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica/métodos , Microbiota/genética , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Metagenômica/instrumentação , Pinturas , Análise de Sequência de DNA , Têxteis
14.
Proc Biol Sci ; 288(1944): 20202716, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33529557

RESUMO

Arthropods can produce a wide range of antifungal compounds, including specialist proteins, cuticular products, venoms and haemolymphs. In spite of this, many arthropod taxa, particularly eusocial insects, make use of additional antifungal compounds derived from their mutualistic association with microbes. Because multiple taxa have evolved such mutualisms, it must be assumed that, under certain ecological circumstances, natural selection has favoured them over those relying upon endogenous antifungal compound production. Further, such associations have been shown to persist versus specific pathogenic fungal antagonists for more than 50 million years, suggesting that compounds employed have retained efficacy in spite of the pathogens' capacity to develop resistance. We provide a brief overview of antifungal compounds in the arthropods' armoury, proposing a conceptual model to suggest why their use remains so successful. Fundamental concepts embedded within such a model may suggest strategies by which to reduce the rise of antifungal resistance within the clinical milieu.


Assuntos
Antifúngicos , Artrópodes , Animais , Antifúngicos/farmacologia , Farmacorresistência Fúngica , Fungos , Insetos
15.
Int J Food Microbiol ; 334: 108808, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-32835995

RESUMO

Heat-stable mycotoxins are widely detected in flour and produced by Aspergillus spp., Fusarium spp. and Penicillium spp. Forty different flours purchased in Italy are used to assess potential risk factors via a systematically screening of a number of variables: the type of flour, organic, whole and white wheat, types of packaging (paper, plastic and weight). Fungal recovery and co-occurrence of specific mycotoxins was also assessed. The results showed that flour originated from fruits had a significant higher recovery of fungi, while seed/pseudocereals had the highest mycotoxins detection. Flours originating from organic agriculture are more prone to higher fungal recovery and mycotoxins detection when compared with not-organic flours. Packaging is also important: packaging weighting less than 376 g supports significantly more fungal recovery and the plastic packages was observed to retain more fungi and mycotoxins detection when compared with paper. Recovery measured as Log (CFU/g) of fungal genera is not directly proportional to the amount of mycotoxins. Finally, linear regression and mixed logit regression models show that the mean level of aflatoxins B1 (ng/g on the logarithmic scale) reduces by 0.485 when moving from an organic to a non-organic flour, while a significant increase of 0.369 when moving from paper to a plastic packaging.


Assuntos
Farinha/análise , Farinha/microbiologia , Contaminação de Alimentos/análise , Fungos/isolamento & purificação , Micotoxinas/análise , Embalagem de Alimentos , Fungos/classificação , Fungos/metabolismo , Itália , Agricultura Orgânica , Triticum/microbiologia
16.
Front Microbiol ; 11: 1386, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714304

RESUMO

Calcareous stones have been widely used in artworks and buildings by almost all human cultures. Now, more than ever, the increased environmental pollution and global warming are threatening the stone cultural heritage. Weathering due to physical, chemical and biological factors results in monumental calcareous stone deterioration. These agents induce a progressive dissolution of the mineral matrix, increase porosity, and lead to structural weakening. Bacterial Calcium Carbonate Mineralization is a widespread naturally occurring process which in the last decades was proposed as an environmentally friendly tool to protect monumental and ornamental calcareous stones. The advantage of this treatment is that it mimics the natural process responsible for stone formation, producing a mineral product similar to the stone substrate. This mini review highlights the milestones of the biomineralization approaches with focus on in situ stone artworks protection. The strategies explored to date are based on three main approaches: (i) the use of allochthonous and (ii) autochthonous alive cells that, due to the bacterial metabolism, foster biomineralization; (iii) the cell-free approach which uses fractionated cellular components inducing biomineralization. We discuss the challenging aspects of all these techniques, focusing on in situ applications and suggesting perspectives based on recent advances.

17.
Front Microbiol ; 11: 1087, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547520

RESUMO

Fresh vegetables including baby greens, microgreens, and sprouts can host human pathogens without exhibiting any visible signs of spoilage. It is clear that the vast majority of foodborne disease outbreaks associated with vegetable produce are not simply a result of an oversight by a producer, as it was shown that zoonotic pathogens from Enterobacteriaceae can contaminate produce through various routes throughout the entire production cycle. In this context, phenotypic and genotypic signatures have been used since early ages in agriculture to obtain better produce, and can be used today as a strategy to reduce the risk of outbreaks through plant breeding. In this mini-review, we provide an updated view and perspectives on to what extent the selection of biological markers can be used to select safer cultivars of vegetable crops such as tomato (the most studied), leafy greens and cabbage. Once this knowledge will be better consolidated, these approaches should be integrated into the development of comprehensive farm-to-fork produce safety programs.

18.
J Sci Food Agric ; 100(7): 3078-3086, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32077490

RESUMO

BACKGROUND: Nitric oxide (NO) donors have been used to control biofilm formation. Nitric oxide can be delivered in situ using organic carriers and acts as a signaling molecule. Cells exposed to NO shift from biofilm to the planktonic state and are better exposed to the action of disinfectants. In this study, we investigate the capability of the NO donors molsidomine, MAHAMA NONOate, NO-aspirin and diethylamine NONOate to act as anti-adhesion agents on ready-to-eat vegetables, as well as dispersants for a number of pathogenic biofilms on plastic. RESULTS: Our results showed that 10 pM molsidomine reduced the attachment of Salmonella enterica sv Typhimurium 14 028 to pea shoots and coriander leaves of about 0.5 Log(CFU/leaf) when compared with untreated control. The association of 10 pmol L-1 molsidomine with 0.006% H2 O2 showed a synergistic effect, leading to a significant reduction in cell collection on the surface of the vegetable of about 1 Log(CFU/leaf). Similar results were obtained for MAHMA NONOate. We also showed that the association of diethylamine NONOate at 10 mmol L-1 and 10 pmol L-1 with the quaternary ammonium compound diquat bromide improved the effectiveness of biofilm dispersal by 50% when compared with the donor alone. CONCLUSIONS: Our findings reveal a dual role of NO compounds in biofilm control. Molsidomine, MAHMA NONOate, and diethylamine NONOate are good candidates for either preventing biofilm formation or dispersing biofilm, especially when used in conjunction with disinfectants. Nitric oxide compounds have the potential to be developed into a toolkit for pro-active practices for good agricultural practices (GAPs), hazard analysis and critical control points (HACCP), and cleaning-in-place (CIP) protocols in industrial settings where washing is routinely applied. © 2020 Society of Chemical Industry.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Fast Foods/microbiologia , Doadores de Óxido Nítrico/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Verduras/microbiologia , Coriandrum/microbiologia , Desinfetantes/farmacologia , Fast Foods/análise , Hidrazinas/farmacologia , Molsidomina/farmacologia , Pisum sativum/microbiologia , Plásticos/análise , Polipropilenos/análise , Salmonella typhimurium/fisiologia
19.
PLoS One ; 15(1): e0228178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31978153

RESUMO

In recent years, multidrug resistance of Shigella strains associated with genetic elements like pathogenicity islands, have become a public health problem. The Shigella resistance locus pathogenicity island (SRL PAI) of S. flexneri 2a harbors a 16Kbp region that contributes to the multidrug resistance phenotype. However, there is not much information about other functions such as metabolic, physiologic or ecological ones. For that, wild type S. flexneri YSH6000 strain, and its spontaneous SRL PAI mutant, 1363, were used to study the contribution of the island in different growth conditions. Interestingly, when both strains were compared by the Phenotype Microarrays, the ability to metabolize D-aspartic acid as a carbon source was detected in the wild type strain but not in the mutant. When D-aspartate was added to minimal medium with other carbon sources such as mannose or mannitol, the SRL PAI-positive strain was able to metabolize it, while the SRL PAI-negative strain did not. In order to identify the genetic elements responsible for this phenotype, a bioinformatic analysis was performed and two genes belonging to SRL PAI were found: orf8, coding for a putative aspartate racemase, and orf9, coding for a transporter. Thus, it was possible to measure, by an indirect analysis of racemization activity in minimal medium supplemented only with D-aspartate, that YSH6000 strain was able to transform the D-form into L-, while the mutant was impaired to do it. When the orf8-orf9 region from SRL island was transformed into S. flexneri and S. sonnei SRL PAI-negative strains, the phenotype was restored. Although, when single genes were cloned into plasmids, no complementation was observed. Our results strongly suggest that the aspartate racemase and the transporter encoded in the SRL pathogenicity island are important for bacterial survival in environments rich in D-aspartate.


Assuntos
Isomerases de Aminoácido/metabolismo , Ácido D-Aspártico/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Ilhas Genômicas , Shigella flexneri/genética , Isomerases de Aminoácido/genética , Proteínas de Bactérias/metabolismo , Ácido D-Aspártico/análise , Genes Bacterianos , Manose/metabolismo , Fases de Leitura Aberta/genética , Fenótipo , Shigella flexneri/enzimologia , Shigella flexneri/crescimento & desenvolvimento , Shigella sonnei/genética
20.
J Microbiol Methods ; 167: 105724, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31669656

RESUMO

Antibiotics released in the environment exert a selective pressure on the resident microbiota. It is well accepted that the mere measurement of antibiotics does not reflect the actual bioavailability. In fact, antibiotics can be adsorbed or complexed to particles and/or chemicals in water and soil. Bioavailable concentrations of antibiotics in soil and water are subjected to great uncertainty, therefore biological assays are increasingly recognized as that allow an indirect determination of the residual antibiotic activity. Here we propose how a fitness test for bacteria can be used to qualitatively assess the bioavailability of a specific antibiotic in the environment. The findings show that by using a pair of resistant and sensitive bacterial strains, the resulting fitness can indirectly reflect antibiotic bioavailability. Hence, this test can be used as a complementary assay to other biological and chemical tests to assess bioavailability of antibiotics.


Assuntos
Antibacterianos/análise , Bactérias/metabolismo , Ecossistema , Poluição Ambiental , Aptidão Genética/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/genética , Disponibilidade Biológica , Farmacorresistência Bacteriana Múltipla/genética , Microbiologia do Solo , Poluentes do Solo/análise , Microbiologia da Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA