Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 11(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35887836

RESUMO

Given the non-labile, terminal differentiation of inner-ear sensory cells, preserving their function is critical since sensory cell damage results in irreversible hearing loss. Gentamicin-induced cytotoxicity is one of the major causes of sensory cell damage and consequent sensorineural hearing loss. However, the precise molecular mechanisms and target proteins involved in ototoxicity are still unknown. The objective of the present study was to identify target proteins involved in gentamicin-induced cytotoxicity to better characterize the molecular pathways involved in sensory cell damage following ototoxic drug administration using House Ear Institute-Organ of Corti 1 (HEI-OC1) cells and high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). We identified several unique proteins involved in gentamicin-induced cytotoxicity, expression of which were further confirmed using confocal microscopy. Further investigation of these pathways can inform the design and discovery of novel treatment modalities to prevent sensory cell damage and preserve their function.

2.
J Clin Med ; 9(3)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155788

RESUMO

BACKGROUND: Electrode insertion trauma (EIT) during cochlear implantation (CI) can cause loss of residual hearing. L-N-acetylcysteine (L-NAC) and dexamethasone (Dex) have been individually shown to provide otoprotection albeit at higher concentrations that may be associated with adverse effects. Objective/Aims: The aim of this study is to determine whether L-NAC and Dex could be combined to decrease their effective dosage. MATERIALS AND METHODS: The organ of Corti (OC) explants were divided into various groups: 1) control; 2) EIT; 3) EIT treated with different concentrations of Dex; 4) EIT treated with different concentrations of L-NAC; 5) EIT treated with L-NAC and Dex in combination. Hair cell (HC) density, levels of oxidative stress, proinflammatory cytokines and nitric oxide (NO) was determined. RESULTS: There was a significant loss of HCs in explants subjected to EIT compared to the control group. L-NAC and Dex in combination was able to provide significant otoprotection at lower concentrations compared to individual drugs. CONCLUSIONS AND SIGNIFICANCE: A combination containing L-NAC and Dex is effective in protecting sensory cells at lower protective doses than each compound separately. These compounds can be combined allowing a decrease of potential side effects of each compound and providing significant otoprotection for EIT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA