Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(49): eadi8076, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38055809

RESUMO

The metabotropic glutamate receptors (mGluRs) are family C, dimeric G protein-coupled receptors (GPCRs), which play critical roles in synaptic transmission. Despite an increasing appreciation of the molecular diversity of this family, how distinct mGluR subtypes are regulated remains poorly understood. We reveal that different group II/III mGluR subtypes show markedly different beta-arrestin (ß-arr) coupling and endocytic trafficking. While mGluR2 is resistant to internalization and mGluR3 shows transient ß-arr coupling, which enables endocytosis and recycling, mGluR8 and ß-arr form stable complexes, which leads to efficient lysosomal targeting and degradation. Using chimeras and mutagenesis, we pinpoint carboxyl-terminal domain regions that control ß-arr coupling and trafficking, including the identification of an mGluR8 splice variant with impaired internalization. We then use a battery of high-resolution fluorescence assays to find that heterodimerization further expands the diversity of mGluR regulation. Together, this work provides insight into the relationship between GPCR/ß-arr complex formation and trafficking while revealing diversity and intricacy in the regulation of mGluRs.


Assuntos
Receptores de Glutamato Metabotrópico , beta-Arrestinas/metabolismo , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo
2.
bioRxiv ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37645747

RESUMO

The metabotropic glutamate receptors (mGluRs) are neuromodulatory family C G protein coupled receptors which assemble as dimers and allosterically couple extracellular ligand binding domains (LBDs) to transmembrane domains (TMDs) to drive intracellular signaling. Pharmacologically, mGluRs can be targeted either at the LBDs by glutamate and synthetic orthosteric compounds or at the TMDs by allosteric modulators. Despite the potential of allosteric TMD-targeting compounds as therapeutics, an understanding of the functional and structural basis of their effects on mGluRs is limited. Here we use a battery of approaches to dissect the distinct functional and structural effects of orthosteric versus allosteric ligands. We find using electrophysiological and live cell imaging assays that both agonists and positive allosteric modulators (PAMs) can drive activation and desensitization of mGluRs. The effects of PAMs are pleiotropic, including both the ability to boost the maximal response to orthosteric agonists and to serve independently as desensitization-biased agonists across mGluR subtypes. Conformational sensors reveal PAM-driven inter-subunit re-arrangements at both the LBD and TMD. Motivated by this, we determine cryo-electron microscopy structures of mGluR3 in the presence of either an agonist or antagonist alone or in combination with a PAM. These structures reveal PAM-driven re-shaping of intra- and inter-subunit conformations and provide evidence for a rolling TMD dimer interface activation pathway that controls G protein and beta-arrestin coupling. Highlights: -Agonists and PAMs drive mGluR activation, desensitization, and endocytosis-PAMs are desensitization-biased and synergistic with agonists-Four combinatorial ligand conditions reveal an ensemble of full-length mGluR structures with novel interfaces-Activation and desensitization involve rolling TMD interfaces which are re-shaped by PAM.

3.
bioRxiv ; 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37645938

RESUMO

G protein-coupled receptors (GPCRs) control intracellular signaling cascades via agonist-dependent coupling to intracellular transducers including heterotrimeric G proteins, GPCR kinases (GRKs), and arrestins. In addition to their critical interactions with the transmembrane core of active GPCRs, all three classes of transducers have also been reported to interact with receptor C-terminal domains (CTDs). An underexplored aspect of GPCR CTDs is their possible role as lipid sensors given their proximity to the membrane. CTD-membrane interactions have the potential to control the accessibility of key regulatory CTD residues to downstream effectors and transducers. Here we report that the CTDs of two closely related family C GPCRs, metabotropic glutamate receptor 2 (mGluR2) and mGluR3, bind to membranes and that this interaction controls receptor function. We first characterize CTD structure with NMR spectroscopy, revealing lipid composition-dependent modes of membrane binding. Using molecular dynamics simulations and structure-guided mutagenesis, we identify key conserved residues and cancer-associated mutations that control CTD-membrane binding. Finally, we provide evidence that mGluR3 transducer coupling is controlled by CTD-membrane interactions in live cells which can be modulated by disease-associated mutations or CTD phosphorylation. This work reveals a novel mechanism of GPCR modulation, suggesting that CTD-membrane binding may be a general regulatory mode throughout the broad GPCR superfamily.

4.
Protein Sci ; 32(4): e4592, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36775935

RESUMO

Outer membrane protein (OMP) biogenesis in gram-negative bacteria is managed by a network of periplasmic chaperones that includes SurA, Skp, and FkpA. These chaperones bind unfolded OMPs (uOMPs) in dynamic conformational ensembles to suppress aggregation, facilitate diffusion across the periplasm, and enhance folding. FkpA primarily responds to heat-shock stress, but its mechanism is comparatively understudied. To determine FkpA chaperone function in the context of OMP folding, we monitored the folding of three OMPs and found that FkpA, unlike other periplasmic chaperones, increases the folded yield but decreases the folding rate of OMPs. The results indicate that FkpA behaves as a chaperone and not as a folding catalyst to influence the OMP folding trajectory. Consistent with the folding assay results, FkpA binds all three uOMPs as determined by sedimentation velocity (SV) and photo-crosslinking experiments. We determine the binding affinity between FkpA and uOmpA171 by globally fitting SV titrations and find it to be intermediate between the known affinities of Skp and SurA for uOMP clients. Notably, complex formation steeply depends on the urea concentration, suggesting an extensive binding interface. Initial characterizations of the complex using photo-crosslinking indicate that the binding interface spans the entire FkpA molecule. In contrast to prior findings, folding and binding experiments performed using subdomain constructs of FkpA demonstrate that the full-length chaperone is required for full activity. Together these results support that FkpA has a distinct and direct effect on OMP folding that it achieves by utilizing an extensive chaperone-client interface to tightly bind clients.


Assuntos
Proteínas de Transporte , Proteínas de Escherichia coli , Humanos , Proteínas de Transporte/metabolismo , Peptidilprolil Isomerase , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Dobramento de Proteína , Chaperonas Moleculares/metabolismo , Periplasma/metabolismo
5.
Curr Opin Struct Biol ; 69: 124-130, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33975156

RESUMO

Membrane proteins have historically been recalcitrant to biophysical folding studies. However, recent adaptations of methods from the soluble protein folding field have found success in their applications to transmembrane proteins composed of both α-helical and ß-barrel conformations. Avoiding aggregation is critical for the success of these experiments. Altogether these studies are leading to discoveries of folding trajectories, foundational stabilizing forces and better-defined endpoints that enable more accurate interpretation of thermodynamic data. Increased information on membrane protein folding in the cell shows that the emerging biophysical principles are largely recapitulated even in the complex biological environment.


Assuntos
Proteínas de Membrana , Dobramento de Proteína , Termodinâmica
6.
Structure ; 29(12): 1339-1356.e7, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33770503

RESUMO

Neuronal voltage-gated sodium channel NaV1.2 C-terminal domain (CTD) binds calmodulin (CaM) constitutively at its IQ motif. A solution structure (6BUT) and other NMR evidence showed that the CaM N domain (CaMN) is structurally independent of the C-domain (CaMC) whether CaM is bound to the NaV1.2IQp (1,901-1,927) or NaV1.2CTD (1,777-1,937) with or without calcium. However, in the CaM + NaV1.2CTD complex, the Ca2+ affinity of CaMN was more favorable than in free CaM, while Ca2+ affinity for CaMC was weaker than in the CaM + NaV1.2IQp complex. The CTD EF-like (EFL) domain allosterically widened the energetic gap between CaM domains. Cardiomyopathy-associated CaM mutants (N53I(N54I), D95V(D96V), A102V(A103V), E104A(E105A), D129G(D130G), and F141L(F142L)) all bound the NaV1.2 IQ motif favorably under resting (apo) conditions and bound calcium normally at CaMN sites. However, only N53I and A102V bound calcium at CaMC sites at [Ca2+] < 100 µM. Thus, they are expected to respond like wild-type CaM to Ca2+ spikes in excitable cells.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Calmodulina/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Calmodulina/genética , Humanos , Mutação , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Ligação Proteica
7.
Science ; 371(6531)2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33602829

RESUMO

Transmembrane ß-barrel proteins (TMBs) are of great interest for single-molecule analytical technologies because they can spontaneously fold and insert into membranes and form stable pores, but the range of pore properties that can be achieved by repurposing natural TMBs is limited. We leverage the power of de novo computational design coupled with a "hypothesis, design, and test" approach to determine TMB design principles, notably, the importance of negative design to slow ß-sheet assembly. We design new eight-stranded TMBs, with no homology to known TMBs, that insert and fold reversibly into synthetic lipid membranes and have nuclear magnetic resonance and x-ray crystal structures very similar to the computational models. These advances should enable the custom design of pores for a wide range of applications.


Assuntos
Simulação por Computador , Proteínas de Membrana/química , Modelos Moleculares , Conformação Proteica em Folha beta , Engenharia de Proteínas , Sequência de Aminoácidos , Cristalografia por Raios X , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas , Espectroscopia de Ressonância Magnética , Membranas Artificiais , Micelas , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica
8.
J Am Chem Soc ; 143(2): 764-772, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33412852

RESUMO

Through the insertion of nonpolar side chains into the bilayer, the hydrophobic effect has long been accepted as a driving force for membrane protein folding. However, how the changing chemical composition of the bilayer affects the magnitude of the side-chain transfer free energies (ΔGsc°) has historically not been well understood. A particularly challenging region for experimental interrogation is the bilayer interfacial region that is characterized by a steep polarity gradient. In this study, we have determined the ΔGsc° for nonpolar side chains as a function of bilayer position using a combination of experiment and simulation. We discovered an empirical correlation between the surface area of the nonpolar side chain, the transfer free energies, and the local water concentration in the membrane that allows for ΔGsc° to be accurately estimated at any location in the bilayer. Using these water-to-bilayer ΔGsc° values, we calculated the interface-to-bilayer transfer free energy (ΔGi,b°). We find that the ΔGi,b° are similar to the "biological", translocon-based transfer free energies, indicating that the translocon energetically mimics the bilayer interface. Together these findings can be applied to increase the accuracy of computational workflows used to identify and design membrane proteins as well as bring greater insight into our understanding of how disease-causing mutations affect membrane protein folding and function.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Fosfolipases A1/química , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Estabilidade Proteica , Termodinâmica
9.
Proc Natl Acad Sci U S A ; 117(45): 28026-28035, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33093201

RESUMO

The periplasmic chaperone network ensures the biogenesis of bacterial outer membrane proteins (OMPs) and has recently been identified as a promising target for antibiotics. SurA is the most important member of this network, both due to its genetic interaction with the ß-barrel assembly machinery complex as well as its ability to prevent unfolded OMP (uOMP) aggregation. Using only binding energy, the mechanism by which SurA carries out these two functions is not well-understood. Here, we use a combination of photo-crosslinking, mass spectrometry, solution scattering, and molecular modeling techniques to elucidate the key structural features that define how SurA solubilizes uOMPs. Our experimental data support a model in which SurA binds uOMPs in a groove formed between the core and P1 domains. This binding event results in a drastic expansion of the rest of the uOMP, which has many biological implications. Using these experimental data as restraints, we adopted an integrative modeling approach to create a sparse ensemble of models of a SurA•uOMP complex. We validated key structural features of the SurA•uOMP ensemble using independent scattering and chemical crosslinking data. Our data suggest that SurA utilizes three distinct binding modes to interact with uOMPs and that more than one SurA can bind a uOMP at a time. This work demonstrates that SurA operates in a distinct fashion compared to other chaperones in the OMP biogenesis network.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Peptidilprolil Isomerase/metabolismo , Membrana Externa Bacteriana/metabolismo , Membrana Externa Bacteriana/fisiologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Modelos Biológicos , Periplasma/metabolismo , Dobramento de Proteína
10.
Protein Sci ; 29(10): 2043-2053, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32748422

RESUMO

SurA is thought to be the most important periplasmic chaperone for outer membrane protein (OMP) biogenesis. Its structure is composed of a core region and two peptidylprolyl isomerase domains, termed P1 and P2, connected by flexible linkers. As such these three independent folding units are able to adopt a number of distinct spatial positions with respect to each other. The conformational dynamics of these domains are thought to be functionally important yet are largely unresolved. Here we address this question of the conformational ensemble using sedimentation equilibrium, small-angle neutron scattering, and folding titrations. This combination of orthogonal methods converges on a SurA population that is monomeric at physiological concentrations. The conformation that dominates this population has the P1 and core domains docked to one another, for example, "P1-closed" and the P2 domain extended in solution. We discovered that the distribution of domain orientations is defined by modest and favorable interactions between the core domain and either the P1 or the P2 domains. These two peptidylprolyl domains compete with each other for core-binding but are thermodynamically uncoupled. This arrangement implies two novel insights. Firstly, an open conformation must exist to facilitate P1 and P2 exchange on the core, indicating that the open client-binding conformation is populated at low levels even in the absence of client unfolded OMPs. Secondly, competition between P1 and P2 binding paradoxically occludes the client binding site on the core, which may serve to preserve the reservoir of binding-competent apo-SurA in the periplasm.


Assuntos
Proteínas de Transporte/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Simulação de Acoplamento Molecular , Peptidilprolil Isomerase/química , Proteínas de Transporte/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Difração de Nêutrons , Peptidilprolil Isomerase/genética , Domínios Proteicos , Espalhamento a Baixo Ângulo
11.
Methods Mol Biol ; 2168: 217-232, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33582994

RESUMO

The thermodynamic stabilities of membrane proteins are of fundamental interest to provide a biophysical description of their structure-function relationships because energy determines conformational populations. In addition, structure-energy relationships can be exploited in membrane protein design and in synthetic biology. To determine the thermodynamic stability of a membrane protein, it is not sufficient to be able to unfold and refold the molecule: establishing path independence of this reaction is essential. Here we describe the procedures required to measure and verify path independence for the folding of outer membrane proteins in large unilamellar vesicles.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Bicamadas Lipídicas/química , Dobramento de Proteína , Termodinâmica , Proteínas da Membrana Bacteriana Externa/metabolismo , Entropia , Proteínas de Escherichia coli/metabolismo , Cinética , Bicamadas Lipídicas/metabolismo
12.
Biophys Chem ; 224: 1-19, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28343066

RESUMO

Several members of the voltage-gated sodium channel family are regulated by calmodulin (CaM) and ionic calcium. The neuronal voltage-gated sodium channel NaV1.2 contains binding sites for both apo (calcium-depleted) and calcium-saturated CaM. We have determined equilibrium dissociation constants for rat NaV1.2 IQ motif [IQRAYRRYLLK] binding to apo CaM (~3nM) and (Ca2+)4-CaM (~85nM), showing that apo CaM binding is favored by 30-fold. For both apo and (Ca2+)4-CaM, NMR demonstrated that NaV1.2 IQ motif peptide (NaV1.2IQp) exclusively made contacts with C-domain residues of CaM (CaMC). To understand how calcium triggers conformational change at the CaM-IQ interface, we determined a solution structure (2M5E.pdb) of (Ca2+)2-CaMC bound to NaV1.2IQp. The polarity of (Ca2+)2-CaMC relative to the IQ motif was opposite to that seen in apo CaMC-Nav1.2IQp (2KXW), revealing that CaMC recognizes nested, anti-parallel sites in Nav1.2IQp. Reversal of CaM may require transient release from the IQ motif during calcium binding, and facilitate a re-orientation of CaMN allowing interactions with non-IQ NaV1.2 residues or auxiliary regulatory proteins interacting in the vicinity of the IQ motif.


Assuntos
Motivos de Aminoácidos , Cálcio/farmacologia , Calmodulina/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.2/química , Animais , Sítios de Ligação , Cálcio/metabolismo , Proteínas do Tecido Nervoso/química , Ressonância Magnética Nuclear Biomolecular , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA