Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Glob Chang Biol ; 27(8): 1645-1661, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421219

RESUMO

Many studies have assessed the potential of agricultural practices to sequester carbon (C). A comprehensive evaluation of impacts of agricultural practices requires not only considering C storage but also direct and indirect emissions of greenhouse gases (GHG) and their side effects (e.g., on the water cycle or agricultural production). We used a high-resolution modeling approach with the Simulateur mulTIdisciplinaire pour les Cultures Standard soil-crop model to quantify soil organic C (SOC) storage potential, GHG balance, biomass production and nitrogen- and water-related impacts for all arable land in France for current cropping systems (baseline scenario) and three mitigation scenarios: (i) spatial and temporal expansion of cover crops, (ii) spatial insertion and temporal extension of temporary grasslands (two sub-scenarios) and (iii) improved recycling of organic resources as fertilizer. In the baseline scenario, SOC decreased slightly over 30 years in crop-only rotations but increased significantly in crop/temporary grassland rotations. Results highlighted a strong trade-off between the storage rate per unit area (kg C ha-1  year-1 ) of mitigation scenarios and the areas to which they could be applied. As a result, while the most promising scenario at the field scale was the insertion of temporary grassland (+466 kg C ha-1  year-1 stored to a depth of 0.3 m compared to the baseline, on 0.68 Mha), at the national scale, it was by far the expansion of cover crops (+131 kg C ha-1  year-1 , on 17.62 Mha). Side effects on crop production, water irrigation and nitrogen emissions varied greatly depending on the scenario and production situation. At the national scale, combining the three mitigation scenarios could mitigate GHG emissions of current cropping systems by 54% (-11.2 from the current 20.5 Mt CO2 e year-1 ), but the remaining emissions would still lie far from the objective of C-neutral agriculture.


Assuntos
Gases de Efeito Estufa , Agricultura , Carbono , Produtos Agrícolas , França , Efeito Estufa , Gases de Efeito Estufa/análise , Solo
3.
Sci Total Environ ; 710: 134597, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32050364

RESUMO

Although organic cropping systems are promoted for their environmental benefits, little is known about their long-term impact on nitrogen (N) fate in the soil-plant-atmosphere system. In this paper, we analyze two long-term experiments: DOK in Switzerland (39-yr) and Foulum organic in Denmark (19-yr). Four treatments were considered in each experiment: two conventional treatments with (CONFYM) or without manure (CONMIN), organic with manure (BIOORG) and unfertilized treatment (NOFERT) at DOK; conventional (CGL-CC+IF) and three organic treatments, one with cover crops only (OGL+CC-M) and two including cover crops and grass-clover with (OGC+CC+M) or without manure (OGC+CC-M), at Foulum. STICS model was used to simulate crop production, N surplus, nitrate leaching, gaseous N losses and changes in soil organic N. It was calibrated in the conventional treatments and tested in organic systems. The crop production, N surplus and soil organic N stocks were satisfactorily predicted. The mean N surplus greatly differed between treatments at DOK, from -58 (NOFERT) to +21 kg N ha-1 yr-1 (CONFYM), but only from -9 (OGL+CC-M) to +21 kg N ha-1 yr-1 (OGC+CC+M) in Foulum. Soil N pools declined continuously in both sites and treatments at a rate varying from -18 to -78 kg N ha-1 yr-1, depending on fertilization and crop rotation. The decline was consistent with the observed N surpluses. Although not all simulations could be tested against field observations and despite of prediction uncertainties, simulations confirm the hypothesis that environmental performances resulting from C and N cycles depend more on specificities of individual than nominal treatments. Significant correlations appeared between long-term N surplus and soil N storage and between total N fertilization and total N gaseous losses. Results showed in both experiments that arable organic systems do not systematically have lower N surplus and N losses than conventional ones, providing opportunity for increasing N use efficiency of these systems.


Assuntos
Agricultura , Dinamarca , Fertilizantes , Nitrogênio , Solo , Suíça
4.
Glob Chang Biol ; 24(1): 360-370, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28752605

RESUMO

Agriculture is the main source of terrestrial N2 O emissions, a potent greenhouse gas and the main cause of ozone depletion. The reduction of N2 O into N2 by microorganisms carrying the nitrous oxide reductase gene (nosZ) is the only known biological process eliminating this greenhouse gas. Recent studies showed that a previously unknown clade of N2 O-reducers (nosZII) was related to the potential capacity of the soil to act as a N2 O sink. However, little is known about how this group responds to different agricultural practices. Here, we investigated how N2 O-producers and N2 O-reducers were affected by agricultural practices across a range of cropping systems in order to evaluate the consequences for N2 O emissions. The abundance of both ammonia-oxidizers and denitrifiers was quantified by real-time qPCR, and the diversity of nosZ clades was determined by 454 pyrosequencing. Denitrification and nitrification potential activities as well as in situ N2 O emissions were also assessed. Overall, greatest differences in microbial activity, diversity, and abundance were observed between sites rather than between agricultural practices at each site. To better understand the contribution of abiotic and biotic factors to the in situ N2 O emissions, we subdivided more than 59,000 field measurements into fractions from low to high rates. We found that the low N2 O emission rates were mainly explained by variation in soil properties (up to 59%), while the high rates were explained by variation in abundance and diversity of microbial communities (up to 68%). Notably, the diversity of the nosZII clade but not of the nosZI clade was important to explain the variation of in situ N2 O emissions. Altogether, these results lay the foundation for a better understanding of the response of N2 O-reducing bacteria to agricultural practices and how it may ultimately affect N2 O emissions.


Assuntos
Bactérias/metabolismo , Óxido Nitroso/química , Microbiologia do Solo , Agricultura , Bactérias/classificação , Desnitrificação , Nitrificação
5.
Nature ; 450(7167): 277-80, 2007 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-17994095

RESUMO

The world's soils store more carbon than is present in biomass and in the atmosphere. Little is known, however, about the factors controlling the stability of soil organic carbon stocks and the response of the soil carbon pool to climate change remains uncertain. We investigated the stability of carbon in deep soil layers in one soil profile by combining physical and chemical characterization of organic carbon, soil incubations and radiocarbon dating. Here we show that the supply of fresh plant-derived carbon to the subsoil (0.6-0.8 m depth) stimulated the microbial mineralization of 2,567 +/- 226-year-old carbon. Our results support the previously suggested idea that in the absence of fresh organic carbon, an essential source of energy for soil microbes, the stability of organic carbon in deep soil layers is maintained. We propose that a lack of supply of fresh carbon may prevent the decomposition of the organic carbon pool in deep soil layers in response to future changes in temperature. Any change in land use and agricultural practice that increases the distribution of fresh carbon along the soil profile could however stimulate the loss of ancient buried carbon.


Assuntos
Carbono/química , Carbono/metabolismo , Solo/análise , Biomassa , Carbono/análise , Dióxido de Carbono/metabolismo , Celulose/metabolismo , Espectroscopia de Ressonância Magnética , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA