Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202401661, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780226

RESUMO

The activity of catalytic nanoparticles is strongly dependent on their surface chemistry, which controls colloidal stability and substrate diffusion toward catalytic sites. In this work, we studied how the outer surface chemistry of nanostructured Rh(II)-based metal-organic cages or polyhedra (Rh-MOPs) impacts their performance in homogeneous catalysis. Specifically, through post-synthetic coordination of aliphatic imidazole ligands onto the exohedral Rh(II) axial sites of Rh-MOPs, we solubilized a cuboctahedral Rh-MOP in dichloromethane, thereby enabling its use as a homogeneous catalyst. We demonstrated that the presence of the coordinating ligand on the surface of the Rh-MOP does not hinder its catalytic activity in styrene aziridination and cyclopropanation reactions, thanks to the dynamic Rh-imidazole coordination bond. Finally, we used similar ligand exchange post-synthetic reactions to develop a ligand-mediated approach for precipitating the Rh-MOP catalyst, facilitating the recovery and reuse of Rh-MOPs as homogeneous catalysts.

2.
Chem Sci ; 14(42): 11737-11748, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37920351

RESUMO

Recently, increased attention has been focused on amorphous metal-organic frameworks (MOFs) and, more specifically, MOF glasses, the first new glass category discovered since the 1970s. In this work, we explore the fabrication of a compositional series of hybrid blends, the first example of blending a MOF and inorganic glass. We combine ZIF-62(Zn) glass and an inorganic glass, 30Na2O-70P2O5, to combine the chemical versatility of the MOF glass with the mechanical properties of the inorganic glass. We investigate the interfacial interactions between the two components using pair distribution function analysis and solid state NMR spectroscopy, and suggest potential interactions between the two phases. Thermal analysis of the blend samples indicated that they were less thermally stable than the starting materials and had a Tg shifted relative to the pristine materials. Annular dark field scanning transmission electron microscopy tomography, X-ray energy dispersive spectroscopy (EDS), nanoindentation and 31P NMR all indicated close mixing of the two phases, suggesting the formation of immiscible blends.

3.
ACS Appl Mater Interfaces ; 15(25): 30212-30219, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37307137

RESUMO

Condensation of BINAPO-(PhCHO)2 and 1,3,5-tris(4-aminophenyl)benzene (TAPB) results in a new imine-based chiral organic material (COM) that can be further post-functionalized through reductive transformation of imine linkers to amines. While the imine-based material does not show the necessary stability to be used as a heterogeneous catalyst, the reduced amine-linked framework can be efficiently employed in asymmetric allylation of different aromatic aldehydes. Yields and enantiomeric excesses found are comparable to those observed for the molecular BINAP oxide catalyst, but importantly, the amine-based material also permits its recyclability.

4.
Adv Mater ; 35(24): e2209475, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36563668

RESUMO

Organic photochemistry is intensely developed in the 1980s, in which the nature of excited electronic states and the energy and electron transfer processes are thoroughly studied and finally well-understood. This knowledge from molecular organic photochemistry can be transferred to the design of covalent organic frameworks (COFs) as active visible-light photocatalysts. COFs constitute a new class of crystalline porous materials with substantial application potentials. Featured with outstanding structural tunability, large porosity, high surface area, excellent stability, and unique photoelectronic properties, COFs are studied as potential candidates in various research areas (e.g., photocatalysis). This review aims to provide the state-of-the-art insights into the design of COF photocatalysts (pristine, functionalized, and hybrid COFs) for organic transformations. The catalytic reaction mechanism of COF-based photocatalysts and the influence of dimensionality and crystallinity on heterogenous photocatalysis performance are also discussed, followed by perspectives and prospects on the main challenges and opportunities in future research of COFs and COF-based photocatalysts.

5.
Chem Soc Rev ; 51(18): 8140, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36004669

RESUMO

Correction for 'Metal-organic framework (MOF)-, covalent-organic framework (COF)-, and porous-organic polymers (POP)-catalyzed selective C-H bond activation and functionalization reactions' by Saba Daliran et al., Chem. Soc. Rev., 2022, https://doi.org/10.1039/d1cs00976a.

6.
Chem Soc Rev ; 51(18): 7810-7882, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35938695

RESUMO

Although C-H functionalization is one of the simplest reactions, it requires the use of highly active and selective catalysts. Recently, C-H-active transformations using porous materials such as crystalline metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs) as well as amorphous porous-organic polymers (POPs) as new emerging heterogeneous catalysts have attracted significant attention due to their promising activity and potential material tunability. These porous solids offer exceptional structural uniformity, facile tunability and permanent porosity. In addition, tuning the catalytic selectivity of these porous materials can be achieved through engineering their site microenvironments, such as metal node substitution, linker changes, node/linker functionalization, and pore modification. The present review provides an overview of the current state of the art on MOFs, COFs and POPs as advanced catalysts for various C-H bond activation reactions, providing details about their chemo-, regio-, and stereo-selectivity control, comparing their performance with that of other catalysts, triggering additional research by showing the present limitations and challenges in this area, and providing a perspective for future developments.

7.
ACS Appl Mater Interfaces ; 14(14): 16258-16268, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35348315

RESUMO

Three materials containing a photoactive unit, 10-phenyl phenothiazine (PTH), have been studied for the visible light-mediated oxidative coupling of amines. In particular, the materials considered are assembled through the condensation of extended polyimine, polyhydrazone, or polytriazine frameworks. These three materials present different stabilities in the presence of strong nucleophiles such as amines, which is a key factor for efficient catalytic performance. In the series of materials reported herein, the triazine-based material shows the optimal compromise between activity and stability when studied for the oxidative coupling of amines, achieving imine products. Accordingly, while significant leaching of molecular active fragments is ruled out for triazine-based polymers, other materials of the series show a significant chemical erosion as a result of the reaction with the amine substrates. Consequently, only a triazine-based material allows performing several catalytic cycles (up to seven) with yields higher than 80%. The applicability of this heterogeneous catalyst has been proven with a variety of substrates, confirming its stability and obtaining diverse imine coupling products with excellent yields.

8.
ACS Catal ; 11(19): 12344-12354, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34900388

RESUMO

The functionalization of an imine-based layered covalent organic framework (COF), containing phenanthroline units as ligands, has allowed the obtention of a heterobimetallated material. Photoactive Ir and Ni fragments were immobilized within the porous structure of the COF, enabling heterogeneous light-mediated Csp3-Csp2 cross-couplings. As radical precursors, potassium benzyl- and alkoxy-trifluoroborates, organic silicates, and proline derivatives were employed, which brings out the good versatility of Ir,Ni@Phen-COF. Moreover, in all the studied cases, an enhanced activity and stability have been observed in comparison with analogous homogenous systems.

9.
ACS Catal ; 11(19): 12133-12145, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34621594

RESUMO

A highly efficient enantioselective inverse-electron-demand aza-Diels-Alder reaction between aza-sulfonyl-1-aza-1,3-butadienes and silyl (di)enol ethers has been developed. The presented methodology allows the synthesis of benzofuran-fused 2-piperidinol derivatives with three contiguous stereocenters in a highly selective manner, as even the hemiaminal center is completely stereocontrolled. Density functional theory (DFT) calculations support that the hydrogen-bond donor-based bifunctional organocatalyst selectively triggers the reaction through the ipso,α-position of the dienophile, in contrast to the reactivity observed for dienolates in situ generated from ß,γ-unsaturated derivatives. Moreover, the calculations have clarified the mechanism of the reaction and the ability of the hydrogen-bond donor core to hydrolyze selectively the E isomer of the dienol ether. Furthermore, to demonstrate the applicability of silyl enol ethers as nucleophiles in the asymmetric synthesis of interesting benzofuran-fused derivatives, the catalytic system has also been implemented for the highly efficient installation of an aromatic ring in the piperidine adducts.

10.
Front Chem ; 9: 708312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249875

RESUMO

Covalent Organic Frameworks (COFs) and related extended organic materials have been widely used as photocatalysts in the last few years. Such interest arises from the wide range of covalent linkages employed in their construction, which offer many possibilities to design extended frameworks and to link photoactive building blocks. Thus, the potential utility of predesigned organic photoactive fragments can be synergistically added to the inherent advantages of heterogeneous catalysis, such as recyclability and easy separation of catalyst. In this overview, the current state of the art on the design of organic materials for photocatalytic oxidation reactions will be presented. The designing process of these materials is usually conditioned by the generally accepted concept that crystallinity and porosity defines the quality of the heterogeneous catalysts obtained. The care for the structural integrity of materials obtained is understandable because many properties and applications are intimately related to these features. However, the catalytic activity does not always directly depends on these characteristics. A critical compilation of the available literature is performed in order to offer a general perspective of the use of COFs and Covalent Triazine Frameworks (CTFs) in photocatalytic oxidation processes, including water oxidation, which constitute an important outcome relevant to artificial photosynthesis.

11.
Dalton Trans ; 49(19): 6446-6456, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32355938

RESUMO

The electrochemical reduction of organic contaminants allows their removal from water. In this contribution, the electrocatalytic hydrogenation of nitrobenzene is studied using both oxidized carbon fibres and ruthenium nanoparticles supported on unmodified carbon fibres as catalysts. The two systems produce azoxynitrobenzene as the main product, while aniline is only observed in minor quantities. Although PhNO2 hydrogenation is the favoured reaction, the hydrogen evolution reaction (HER) competes in both systems under catalytic conditions. H2 formation occurs in larger amounts when using the Ru nanoparticle based catalyst. While similar reaction outputs were observed for both catalytic systems, DFT calculations revealed some significant differences related to distinct interactions between the catalytic material and the organic substrates or products, which could pave the way for the design of new catalytic materials.

12.
Commun Chem ; 3(1): 132, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36703325

RESUMO

The broad presence of azaarene moieties in natural products has promoted the development of new functionalization reactions, giving access to larger libraries of bioactive compounds. The light promoted [2 + 2] photocycloaddition reaction to generate cyclobutanes has been extensively studied in photochemistry. In particular, De Mayo reported the [2 + 2] cycloaddition followed by retroaldol condensation between enols of 1,3-dicarbonyls and double bonds to synthesize 1,5-dicarbonyls. Herein, we describe the [2 + 2] photocycloaddition followed by a ring-opening rearomatization reaction between electron-deficient 2-methylene-azaarenes and double bonds, taking advantage of the ability of these heterocyclic derivatives to form the corresponding pseudo-enamine intermediate. The procedure shows a high functional group tolerance either on the double bond or the heteroarene side and allows the presence of different electron-withdrawing groups. In addition, the wide applicability of this reaction has been demonstrated through the late-stage derivatization of several natural products. Photochemical studies, together with theoretical calculations, support a mechanism involving the photosensitization of the pseudo-enamine intermediate.

13.
Nanoscale ; 12(2): 1128-1137, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31850432

RESUMO

The assembly of 3-dimensional covalent organic frameworks on the surface of carbon nanotubes is designed and successfully developed for the first time via the hybridization of imine-based covalent organic frameworks (COF-300) and oxidized MWCNTs by one-pot chemical synthesis. The resulting hybrid material ox-MWCNTs@COF exhibits a conformal structure that consists of a uniform amorphous COF layer covering the ox-MWCNT surface. The measurements of individual hybrid nanotube mechanical strength performed with atomic force microscopy provide insights into their stability and resistance. The results evidence a very robust hybrid tubular nanostructure that preserves the benefits obtained from COF, such as CO2 adsorption. Further digestion of the organic structure with aniline enables the study of the interplay between the hybrid interface and its nanomechanics. This new hybrid nanomaterial presents exceptional mechanical and electrical properties, merging the properties of the CNT template and COF-300.

14.
Nat Commun ; 10(1): 2634, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201327

RESUMO

The most useful strategies for the alkylation of allylic systems are related to the Tsuji-Trost reaction or the use of different Lewis acids. Herein we report a photocatalytic approach for the allylation reaction of a variety of nucleophiles, such as heteroarenes, amines and alcohols. This method is compatible with a large variety of pyrroles and indoles, containing different substituents such as electron-withdrawing and electron-donating groups, unprotected nitrogen atoms and bromo derivatives. Moreover, this methodology enables the chromoselective synthesis of Z- or E-allylated compounds. While the use of UV-light irradiation has allowed the synthesis of the previously inaccessible Z-allylated products, E-isomers are prepared simply by changing both the light source to the visible region, and the catalytic system. Based on mechanistic and photochemical proofs, laser flash photolysis studies and DFT calculations, a rational mechanism is presented.

15.
Chemistry ; 24(13): 3305-3313, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29314370

RESUMO

Commercial carbon fibers can be used as electrodes with high conductive surfaces in reduced devices. Oxidative treatment of such electrodes results in a chemically robust material with high catalytic activity for electrochemical proton reduction, enabling the measurement of quantitative faradaic yields (>95 %) and high current densities. Combination of experiments and DFT calculations reveals that the presence of carboxylic groups triggers such electrocatalytic activity in a bioinspired manner. Analogously to the known Hantzsch esters, the oxidized carbon fiber material is able to transfer hydrides, which can react with protons, generating H2 , or with organic substrates resulting in their hydrogenation. A plausible mechanism is proposed based on DFT calculations on model systems.

16.
J Am Chem Soc ; 140(6): 2028-2031, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29364654

RESUMO

We describe solid-gas phase, single-crystal-to-single-crystal, postsynthetic modifications of a metal-organic framework (MOF). Using ozone, we quantitatively transformed the olefin groups of a UiO-66-type MOF into 1,2,4-trioxolane rings, which we then selectively converted into either aldehydes or carboxylic acids.

17.
J Vis Exp ; (125)2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28715375

RESUMO

Covalent Organic Frameworks (COFs) are a class of porous covalent materials which are frequently synthesized as unprocessable crystalline powders. The first COF was reported in 2005 with much effort centered on the establishment of new synthetic routes for its preparation. To date, most available synthetic methods for COF synthesis are based on bulk mixing under solvothermal conditions. Therefore, there is increasing interest in developing systematic protocols for COF synthesis that provide for fine control over reaction conditions and improve COF processability on surfaces, which is essential for their use in practical applications. Herein, we present a novel microfluidic-based method for COF synthesis where the reaction between two constituent building blocks, 1,3,5-benzenetricarbaldehyde (BTCA) and 1,3,5-tris(4-aminophenyl)benzene (TAPB), takes place under controlled diffusion conditions and at room temperature. Using such an approach yields sponge-like, crystalline fibers of a COF material, hereafter called MF-COF. The mechanical properties of MF-COF and the dynamic nature of the approach allow the continuous production of MF-COF fibers and their direct printing onto surfaces. The general method opens new potential applications requiring advanced printing of 2D or 3D COF structures on flexible or rigid surfaces.


Assuntos
Estruturas Metalorgânicas/química , Microfluídica/métodos , Compostos Orgânicos/química , Propriedades de Superfície
18.
J Inorg Biochem ; 174: 111-118, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28662405

RESUMO

In this work the synthesis and characterization of new gold(III) complexes with quinoline ligands are described. These complexes contain different steric and electronic properties of the donor atom at 8-position of the quinoline in order to modulate their stability and their biological activity. Their redox potential, stability in organic and aqueous solvents, and their biological activity in a panel of six different human tumor cell lines are also presented. In addition, interaction studies of the complexes with model biological molecules (pBR322 and L-acetyl-N-cysteine) were carried out, suggesting that their main target are proteins. From these studies, we have found that the gold(III) complex with an N-tosyl-8-aminoquinoline ligand is the most active complex in all the tumor cell lines, including the cisplatin resistant T-47D and WiDr cell lines. Moreover, this complex showed to be the most stable compound in DMSO and saline solution, even after several hours.


Assuntos
Antineoplásicos , Proliferação de Células/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Compostos Organoáuricos , Quinolinas , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Técnicas Eletroquímicas , Células HeLa , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Compostos Organoáuricos/síntese química , Compostos Organoáuricos/química , Compostos Organoáuricos/farmacologia , Quinolinas/síntese química , Quinolinas/química , Quinolinas/farmacologia
19.
Angew Chem Int Ed Engl ; 56(27): 7826-7830, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28489267

RESUMO

Described herein is a new visible-light photocatalytic strategy for the synthesis of enantioenriched dihydrofurans and cyclopentenes by an intramolecular nitro cyclopropane ring expansion reaction. Mechanistic studies and DFT calculations are used to elucidate the key factors in this new ring expansion reaction, and the need for the nitro group on the cyclopropane.

20.
J Am Chem Soc ; 139(2): 672-679, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28004935

RESUMO

The reactivity and the regioselective functionalization of silyl-diene enol ethers under a bifunctional organocatalyst provokes a dramatic change in the regioselectivity, from the 1,5- to the 1,3-functionalization. This variation makes possible the 1,3-addition of silyl-dienol ethers to nitroalkenes, giving access to the synthesis of tri- and tetrasubstituted double bonds in Rauhut-Currier type products. The process takes place under smooth conditions, nonanionic conditions, and with a high enantiomeric excess. A rational mechanistic pathway is presented based on DFT and mechanistic experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA