Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Biosci ; 14(1): 53, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664730

RESUMO

Data on the course of viral infections revealed severe inflammation as a consequence of antiviral immune response. Despite extensive research, there are insufficient data on the role of innate immune cells in promoting inflammation mediated by immune complexes (IC) of viral antigens and their specific antibodies. Recently, we demonstrated that antigens of human polyomaviruses (PyVs) induce an inflammatory response in macrophages. Here, we investigated macrophage activation by IC. We used primary murine macrophages as a cell model, virus-like particles (VLPs) of PyV capsid protein as antigens, and a collection of murine monoclonal antibodies (mAbs) of IgG1, IgG2a, IgG2b subclasses. The inflammatory response was investigated by analysing inflammatory chemokines and activation of NLRP3 inflammasome. We observed a diverse pattern of chemokine secretion in macrophages treated with different IC compared to VLPs alone. To link IC properties with cell activation status, we characterised the IC by advanced optical and acoustic techniques. Ellipsometry provided precise real-time kinetics of mAb-antigen interactions, while quartz crystal microbalance measurements showed changes in conformation and viscoelastic properties during IC formation. These results revealed differences in mAb-antigen interaction and mAb binding parameters of the investigated IC. We found that IC-mediated cell activation depends more on IC characteristics, including mAb affinity, than on mAb affinity for the activating Fc receptor. IC formed by the highest affinity mAb showed a significant enhancement of inflammasome activation. This may explain the hyperinflammation related to viral infection and vaccination. Our findings demonstrate that IC promote the viral antigen-induced inflammatory response depending on antibody properties.

2.
Front Immunol ; 13: 831815, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35355981

RESUMO

Viral antigens can activate phagocytes, inducing inflammation, but the mechanisms are barely explored. The aim of this study is to investigate how viral oligomeric proteins of different structures induce inflammatory response in macrophages. Human THP-1 cell line was used to prepare macrophages that were treated with filamentous nucleocapsid-like particles (NLPs) of paramyxoviruses and spherical virus-like particles (VLPs) of human polyomaviruses. The effects of viral proteins on cell viability, pro-inflammatory cytokines' production, and NLRP3 inflammasome activation were investigated. Filamentous NLPs did not induce inflammation while spherical VLPs mediated inflammatory response followed by NLRP3 inflammasome activation. Inhibitors of cathepsins and K+ efflux decreased IL-1ß release and cell death, indicating a complex inflammasome activation process. A similar activation pattern was observed in primary human macrophages. Single-cell RNAseq analysis of THP-1 cells revealed several cell activation states different in inflammation-related genes. This study provides new insights into the interaction of viral proteins with immune cells and suggests that structural properties of oligomeric proteins may define cell activation pathways.


Assuntos
Inflamassomos , Polyomavirus , Humanos , Inflamassomos/metabolismo , Inflamação/metabolismo , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA