Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202408258, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837581

RESUMO

Pyrroles and indoles bearing N-allenyl tethers participate in a variety of iridium-catalyzed cycloisomerization processes initiated by a C-H activation step, to deliver a diversity of synthetically relevant azaheterocyclic products. By appropriate selection of the ancillary ligand and the substitution pattern of the allene, the reactions can diverge from simple intramolecular hydrocarbonations to tandem processes involving intriguing mechanistic issues. Accordingly, a wide range of heterocyclic structures ranging from dihydro-indolizines and pyridoindoles to tetrahydroindolizines, as well as cyclopropane-fused tetrahydroindolizines can be obtained. Moreover, by using chiral ligands, these cascade processes can be carried out in an enantioselective manner. DFT studies provide insights into the underlying mechanisms and justify the observed chemo- regio- and stereoselectivities.

2.
J Exp Clin Cancer Res ; 43(1): 33, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281027

RESUMO

BACKGROUND: Previous studies by our group have shown that oxidative phosphorylation (OXPHOS) is the main pathway by which pancreatic cancer stem cells (CSCs) meet their energetic requirements; therefore, OXPHOS represents an Achille's heel of these highly tumorigenic cells. Unfortunately, therapies that target OXPHOS in CSCs are lacking. METHODS: The safety and anti-CSC activity of a ruthenium complex featuring bipyridine and terpyridine ligands and one coordination labile position (Ru1) were evaluated across primary pancreatic cancer cultures and in vivo, using 8 patient-derived xenografts (PDXs). RNAseq analysis followed by mitochondria-specific molecular assays were used to determine the mechanism of action. RESULTS: We show that Ru1 is capable of inhibiting CSC OXPHOS function in vitro, and more importantly, it presents excellent anti-cancer activity, with low toxicity, across a large panel of human pancreatic PDXs, as well as in colorectal cancer and osteosarcoma PDXs. Mechanistic studies suggest that this activity stems from Ru1 binding to the D-loop region of the mitochondrial DNA of CSCs, inhibiting OXPHOS complex-associated transcription, leading to reduced mitochondrial oxygen consumption, membrane potential, and ATP production, all of which are necessary for CSCs, which heavily depend on mitochondrial respiration. CONCLUSIONS: Overall, the coordination complex Ru1 represents not only an exciting new anti-cancer agent, but also a molecular tool to dissect the role of OXPHOS in CSCs. Results indicating that the compound is safe, non-toxic and highly effective in vivo are extremely exciting, and have allowed us to uncover unprecedented mechanistic possibilities to fight different cancer types based on targeting CSC OXPHOS.


Assuntos
Neoplasias Pancreáticas , Rutênio , Humanos , Fosforilação Oxidativa , Rutênio/farmacologia , Mitocôndrias/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Células-Tronco Neoplásicas/metabolismo
3.
Org Lett ; 25(46): 8372-8376, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37948159

RESUMO

Cobalt(I) catalysts equipped with bisphosphine ligands can be used to promote formal (3 + 2 + 2) intramolecular cycloadditions of enynylidenecyclopropanes of type 1. The method provides synthetically appealing 5,7,5-fused tricyclic systems in good yields and with complete diastereo- and chemoselectivity. Interestingly, its scope differs from that of previously reported annulations based on precious metal catalysts, specifically rhodium and palladium. Noticeably, density functional theory calculations confirm that the mechanism of the reaction is also different from those proposed for these other catalysts.

4.
RSC Chem Biol ; 4(7): 486-493, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37415868

RESUMO

We report the modelling of the DNA complex of an artificial miniprotein composed of two zinc finger modules and an AT-hook linking peptide. The computational study provides for the first time a structural view of these types of complexes, dissecting interactions that are key to modulate their stability. The relevance of these interactions was validated experimentally. These results confirm the potential of this type of computational approach for studying peptide-DNA complexes and suggest that they could be very useful for the rational design of non-natural, DNA binding miniproteins.

5.
Chem Sci ; 14(23): 6408-6413, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37325130

RESUMO

Cationic cyclopentadienyl Ru(ii) catalysts can efficiently promote mild intermolecular alkyne-alkene couplings in aqueous media, even in the presence of different biomolecular components, and in complex media like DMEM. The method can also be used for the derivatization of amino acids and peptides, therefore proposing a new way to label biomolecules with external tags. This C-C bond-forming reaction, based on simple alkene and alkyne reactants, can now be added to the toolbox of bioorthogonal reactions promoted by transition metal catalysts.

6.
Angew Chem Int Ed Engl ; 62(18): e202214510, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36602092

RESUMO

Iridium-catalyzed borylations of aromatic C-H bonds are highly attractive transformations because of the diversification possibilities offered by the resulting boronates. These transformations are best carried out using bidentate bipyridine or phenanthroline ligands, and tend to be governed by steric factors, therefore resulting in the competitive functionalization of meta and/or para positions. We have now discovered that a subtle change in the bipyridine ligand, namely, the introduction of a CF3 substituent at position 5, enables a complete change of regioselectivity in the borylation of aromatic amides, allowing the synthesis of a wide variety of ortho-borylated derivatives. Importantly, thorough computational studies suggest that the exquisite regio- and chemoselectivity stems from unusual outer-sphere interactions between the amide group of the substrate and the CF3 -substituted aryl ring of the bipyridine ligand.

7.
Chem Commun (Camb) ; 58(56): 7769-7772, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35730795

RESUMO

Non-canonical DNA structures, particularly 3-Way Junctions (3WJs) that are transiently formed during DNA replication, have recently emerged as promising chemotherapeutic targets. Here, we describe a new approach to target 3WJs that relies on the cooperative and sequence-selective recognition of A/T-rich duplex DNA branches by three AT-Hook peptides attached to a three-fold symmetric and fluorogenic 1,3,5-tristyrylbenzene core.


Assuntos
Replicação do DNA , DNA , DNA/química , Conformação de Ácido Nucleico
8.
RSC Adv ; 12(6): 3500-3504, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35425354

RESUMO

Herein, we describe an approach for the on-demand disassembly of dimeric peptides using a palladium-mediated cleavage of a designed self-immolative linker. The utility of the strategy is demonstrated for the case of dimeric basic regions of bZIP transcription factors. While the dimer binds designed DNA sequences with good affinities, the peptide-DNA complex can be readily dismounted by addition of palladium reagents that trigger the cleavage of the spacer, and the release of unfunctional monomeric peptides.

9.
Commun Chem ; 5(1): 75, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-36697641

RESUMO

RAS oncoproteins are molecular switches associated with critical signaling pathways that regulate cell proliferation and differentiation. Mutations in the RAS family, mainly in the KRAS isoform, are responsible for some of the deadliest cancers, which has made this protein a major target in biomedical research. Here we demonstrate that a designed bis-histidine peptide derived from the αH helix of the cofactor SOS1 binds to KRAS with high affinity upon coordination to Pd(II). NMR spectroscopy and MD studies demonstrate that Pd(II) has a nucleating effect that facilitates the access to the bioactive α-helical conformation. The binding can be suppressed by an external metal chelator and recovered again by the addition of more Pd(II), making this system the first switchable KRAS binder, and demonstrates that folding-upon-binding mechanisms can operate in metal-nucleated peptides. In vitro experiments show that the metallopeptide can efficiently internalize into living cells and inhibit the MAPK kinase cascade.

10.
ACS Nano ; 15(10): 16924-16933, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34658232

RESUMO

We describe a microporous plasmonic nanoreactor to carry out designed near-infrared (NIR)-driven photothermal cyclizations inside living cells. As a proof of concept, we chose an intramolecular cyclization that is based on the nucleophilic attack of a pyridine onto an electrophilic carbon, a process that requires high activation energies and is typically achieved in bulk solution by heating at ∼90 °C. The core-shell nanoreactor (NR) has been designed to include a gold nanostar core, which is embedded within a metal-organic framework (MOF) based on a polymer-stabilized zeolitic imidazole framework-8 (ZIF-8). Once accumulated inside living cells, the MOF-based cloak of NRs allows an efficient diffusion of reactants into the plasmonic chamber, where they undergo the transformation upon near-IR illumination. The photothermal-driven reaction enables the intracellular generation of cyclic fluorescent products that can be tracked using fluorescence microscopy. The strategy may find different type of applications, such as for the spatio-temporal activation of prodrugs.


Assuntos
Estruturas Metalorgânicas , Ouro , Nanotecnologia , Polímeros
11.
Angew Chem Int Ed Engl ; 60(40): 22017-22025, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34390304

RESUMO

Implementing catalytic organometallic transformations in living settings can offer unprecedented opportunities in chemical biology and medicine. Unfortunately, the number of biocompatible reactions so far discovered is very limited, and essentially restricted to uncaging processes. Here, we demonstrate the viability of performing metal carbene transfer reactions in live mammalian cells. In particular, we show that copper (II) catalysts can promote the intracellular annulation of alpha-keto diazocarbenes with ortho-amino arylamines, in a process that is initiated by an N-H carbene insertion. The potential of this transformation is underscored by the in cellulo synthesis of a product that alters mitochondrial functions, and by demonstrating cell selective biological responses using targeted copper catalysts. Considering the wide reactivity spectrum of metal carbenes, this work opens the door to significantly expanding the repertoire of life-compatible abiotic reactions.


Assuntos
Cobre/química , Metano/análogos & derivados , Quinoxalinas/síntese química , Catálise , Células HeLa , Humanos , Metano/química , Estrutura Molecular , Quinoxalinas/química
12.
Angew Chem Int Ed Engl ; 60(35): 19297-19305, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34137152

RESUMO

We report a versatile, highly enantioselective intramolecular hydrocarbonation reaction that provides a direct access to heteropolycyclic systems bearing chiral quaternary carbon stereocenters. The method, which relies on an iridium(I)/bisphosphine chiral catalyst, is particularly efficient for the synthesis of five-, six- and seven-membered fused indole and pyrrole products, bearing one and two stereocenters, with enantiomeric excesses of up to >99 %. DFT computational studies allowed to obtain a detailed mechanistic profile and identify a cluster of weak non-covalent interactions as key factors to control the enantioselectivity.

13.
Angew Chem Int Ed Engl ; 60(29): 16059-16066, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33971072

RESUMO

Tailored ruthenium sandwich complexes bearing photoresponsive arene ligands can efficiently promote azide-thioalkyne cycloaddition (RuAtAC) when irradiated with UV light. The reactions can be performed in a bioorthogonal manner in aqueous mixtures containing biological components. The strategy can also be applied for the selective modification of biopolymers, such as DNA or peptides. Importantly, this ruthenium-based technology and the standard copper-catalyzed azide-alkyne cycloaddition (CuAAC) proved to be compatible and mutually orthogonal.

14.
Angew Chem Int Ed Engl ; 60(15): 8182-8188, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33464693

RESUMO

Low-valent cobalt complexes equipped with chiral ligands can efficiently promote highly enantioselective (3+2) cycloadditions of alkyne-tethered alkylidenecyclopropanes. The annulation allows to assemble bicyclic systems containing five-membered rings in good yields and with excellent enantiomeric ratios. We also present a mechanistic discussion based on experimental and computational data, which support the involvement of CoI /CoIII catalytic cycles.

15.
Chemistry ; 27(15): 4789-4816, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32991764

RESUMO

During the last decade, there has been a tremendous interest for developing non-natural biocompatible transformations in biologically relevant media. Among the different encountered strategies, the use of transition metal complexes offers unique possibilities due to their high transformative power. However, translating the potential of metal catalysts to biological settings, including living cells or small-animal models such as mice or zebrafish, poses numerous challenges associated to their biocompatibility, and their stability and reactivity in crowded aqueous environments. Herein, we describe the most relevant advances in this direction, with a particular emphasis on the systems' structure, their mode of action and the mechanistic bases of each transformation. Thus, the key challenges from an organometallic perspective might be more easily identified.


Assuntos
Complexos de Coordenação , Elementos de Transição , Animais , Catálise , Metais , Camundongos
16.
Chem Soc Rev ; 49(20): 7378-7405, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32926061

RESUMO

Transition metal-catalyzed hydrocarbonations of unsaturated substrates have emerged as powerful synthetic tools for increasing molecular complexity in an atom-economical manner. Although this field was traditionally dominated by low valent rhodium and ruthenium catalysts, in recent years, there have been many reports based on the use of iridium complexes. In many cases, these reactions have a different course from those of their rhodium homologs, and even allow performing otherwise inviable transformations. In this review we aim to provide an informative journey, from the early pioneering examples in the field, most of them based on other metals than iridium, to the most recent transformations catalyzed by designed Ir(i) complexes. The review is organized by the type of C-H bond that is activated (with C sp2, sp or sp3), as well as by the C-C unsaturated partner that is used as a hydrocarbonation partner (alkyne, allene or alkene). Importantly, we discuss the mechanistic foundations of the methods highlighting the differences from those previously proposed for processes catalyzed by related metals, particularly those of the same group (Co and Rh).

17.
Nano Lett ; 20(10): 7068-7076, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32991175

RESUMO

Major current challenges in nano-biotechnology and nano-biomedicine include the implementation of predesigned chemical reactions in biological environments. In this context, heterogeneous catalysis is emerging as a promising approach to extend the richness of organic chemistry onto the complex environments inherent to living systems. Herein we report the design and synthesis of hybrid heterogeneous catalysts capable of being remotely activated by near-infrared (NIR) light for the performance of selective photocatalytic chemical transformations in biological media. This strategy is based on the synergistic integration of Au and TiO2 nanoparticles within mesoporous hollow silica capsules, thus permitting an efficient hot-electron injection from the metal to the semiconductor within the interior of the capsule that leads to a confined production of reactive oxygen species. These hybrid materials can also work as smart NIR-responsive nanoreactors inside living mammalian cells, a cutting-edge advance toward the development of photoresponsive theranostic platforms.


Assuntos
Nanopartículas , Animais , Catálise , Nanotecnologia , Semicondutores , Dióxido de Silício
19.
J Phys Chem Lett ; 11(17): 7218-7223, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32787310

RESUMO

Here, we report the application of surface-enhanced Raman scattering (SERS) spectroscopy as a rapid and practical tool for assessing the formation of coordinative adducts between nucleic acid guanines and ruthenium polypyridyl reagents. The technology provides a practical approach for the wash-free and quick identification of nucleic acid structures exhibiting sterically accessible guanines. This is demonstrated for the detection of a quadruplex-forming sequence present in the promoter region of the c-myc oncogene, which exhibits a nonpaired, reactive guanine at a flanking position of the G-quartets.

20.
Cell Rep Phys Sci ; 1(6): 100076, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32685935

RESUMO

Translating the potential of transition metal catalysis to biological and living environments promises to have a profound impact in chemical biology and biomedicine. A major challenge in the field is the creation of metal-based catalysts that remain active over time. Here, we demonstrate that embedding a reactive metallic core within a microporous metal-organic framework-based cloak preserves the catalytic site from passivation and deactivation, while allowing a suitable diffusion of the reactants. Specifically, we report the fabrication of nanoreactors composed of a palladium nanocube core and a nanometric imidazolate framework, which behave as robust, long-lasting nanoreactors capable of removing propargylic groups from phenol-derived pro-fluorophores in biological milieu and inside living cells. These heterogeneous catalysts can be reused within the same cells, promoting the chemical transformation of recurrent batches of reactants. We also report the assembly of tissue-like 3D spheroids containing the nanoreactors and demonstrate that they can perform the reactions in a repeated manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA