Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Eng Sci Med ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598066

RESUMO

Healthy cornea guarantees the refractive power of the eye and the protection of the inner components, but injury, trauma or pathology may impair the tissue shape and/or structural organization and therefore its material properties, compromising its functionality in the ocular visual process. It turns out that biomechanical research assumes an essential role in analysing the morphology and biomechanical response of the cornea, preventing pathology occurrence, and improving/optimising treatments. In this review, ex vivo, in vivo and in silico methods for the corneal mechanical characterization are reported. Experimental techniques are distinct in testing mode (e.g., tensile, inflation tests), samples' species (human or animal), shape and condition (e.g., healthy, treated), preservation methods, setup and test protocol (e.g., preconditioning, strain rate). The meaningful results reported in the pertinent literature are discussed, analysing differences, key features and weaknesses of the methodologies adopted. In addition, numerical techniques based on the finite element method are reported, incorporating the essential steps for the development of corneal models, such as geometry, material characterization and boundary conditions, and their application in the research field to extend the experimental results by including further relevant aspects and in the clinical field for diagnostic procedure, treatment and planning surgery. This review aims to analyse the state-of-art of the bioengineering techniques developed over the years to study the corneal biomechanics, highlighting their potentiality to improve diagnosis, treatment and healing process of the corneal tissue, and, at the same, pointing out the current limits in the experimental equipment and numerical tools that are not able to fully characterize in vivo corneal tissues non-invasively and discourage the use of finite element models in daily clinical practice for surgical planning.

2.
BMC Vet Res ; 20(1): 153, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659026

RESUMO

BACKGROUND: Melting corneal ulcers are a serious condition that affects a great number of animals and people around the world and it is characterised by a progressive weakening of the tissue leading to possible severe ophthalmic complications, such as visual impairment or blindness. This disease is routinely treated with medical therapy and keratoplasty, and recently also with alternative regenerative therapies, such as cross-linking, amniotic membrane transplant, and laser. Plasma medicine is another recent example of regenerative treatment that showed promising results in reducing the microbial load of corneal tissue together with maintaining its cellular vitality. Since the effect of helium plasma application on corneal mechanical viscoelasticity has not yet been investigated, the aim of this study is first to evaluate it on ex vivo porcine corneas for different exposition times and then to compare the results with previous data on cross-linking treatment. RESULTS: 94 ex vivo porcine corneas divided into 16 populations (healthy or injured, fresh or cultured and treated or not with plasma or cross-linking) were analysed. For each population, a biomechanical analysis was performed by uniaxial stress-relaxation tests, and a statistical analysis was carried out considering the characteristic mechanical parameters. In terms of equilibrium normalised stress, no statistically significant difference resulted when the healthy corneas were compared with lesioned plasma-treated ones, independently of treatment time, contrary to what was obtained about the cross-linking treated corneas which exhibited more intense relaxation phenomena. CONCLUSIONS: In this study, the influence of the Helium plasma treatment was observed on the viscoelasticity of porcine corneas ex vivo, by restoring in lesioned tissue a degree of relaxation similar to the one of the native tissue, even after only 2 min of application. Therefore, the obtained results suggest that plasma treatment is a promising new regenerative ophthalmic therapy for melting corneal ulcers, laying the groundwork for further studies to correlate the mechanical findings with corneal histology and ultrastructural anatomy after plasma treatment.


Assuntos
Córnea , Hélio , Gases em Plasma , Animais , Suínos , Córnea/efeitos dos fármacos , Gases em Plasma/farmacologia , Gases em Plasma/uso terapêutico , Fenômenos Biomecânicos , Álcalis , Pressão Atmosférica , Úlcera da Córnea/veterinária , Úlcera da Córnea/terapia
3.
Comput Methods Programs Biomed ; 238: 107594, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37207463

RESUMO

BACKGROUND AND OBJECTIVE: In the field of urology, the pressure-flow study (PFS) is an essential urodynamics practise which requires the patient's transurethral catheterization during the voiding phase of micturition to evaluate the functionality of the lower urinary tract (LUT) and reveal the pathophysiology of its dysfunctionality. However, the literature evidences confusion regarding the interference of the catheterization on the urethral pressure-flow behaviour. METHODS: The present research study represents the first Computational Fluid-Dynamics (CFD) approach to this urodynamics issue, analysing the influence of a catheter in the male LUT through case studies which included the inter-individual and intra-individual dependence. A set of four three dimensional (3D) models of the male LUT, different in urethral diameters, and a set of three 3D models of the transurethral catheter, diverse in calibre, were developed leading to 16 CFD non-catheterized either catheterized configurations, to describe the typical micturition scenario considering both urethra and catheter characteristics. RESULTS: The developed CFD simulations showed that the urine flow field during micturition was influenced by the urethral cross-sectional area and each catheter determined a specific decrease in flow rate if compared to the relative free uroflow. CONCLUSIONS: In-silico methods allow to analyse relevant urodynamics aspects, which could not be investigated in vivo, and may support the clinical PFS to reduce uncertainty on urodynamic diagnosis.


Assuntos
Uretra , Bexiga Urinária , Humanos , Masculino , Micção/fisiologia , Catéteres , Urodinâmica/fisiologia
4.
Artif Organs ; 47(4): 617-639, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36374175

RESUMO

Artificial sphincters (ASs) are used to replace the function of the biological sphincters in case of severe urinary and fecal incontinence (UI and FI), and gastroesophageal reflux disease (GERD). The design of ASs is established on different mechanisms, e.g., magnetic forces or hydraulic pressure, with the final goal to achieve a implantable and durable AS. In clinical practice, the implantation of in-commerce AS is considered a reasonable solution, despite the sub-optimal clinical outcomes. The failure of these surgeries is due to the malfunction of the devices (between 46 and 51%) or the side effects on the biological tissues (more than 38%), such as infection and atrophy. Concentrating on this latter characteristic, particular attention has been given to the interaction between the biological tissues and AS, pointing out the closing mechanism around the duct and the effect on the tissues. To analyze this aspect, an overview of existing commercial/ready-on-market ASs for GERD, UI, and FI, together with the clinical outcomes available from the in-commerce AS, is given. Moreover, this invited review discusses ongoing developments and future research pathways for creating novel ASs. The application of engineering principles and design concepts to medicine enhances the quality of healthcare and improves patient outcomes. In this context, computational methods represent an innovative solution in the design of ASs, proving data on the occlusive force and pressure necessary to guarantee occlusion and avoid tissue damage, considering the coupling between different device sizes and individual variability.


Assuntos
Incontinência Fecal , Incontinência Urinária , Esfíncter Urinário Artificial , Humanos , Incontinência Fecal/cirurgia , Próteses e Implantes , Incontinência Urinária/cirurgia
5.
Life (Basel) ; 14(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38255682

RESUMO

Urinary incontinence is still an underestimated problem due to its anatomical complexity and social taboo. Most of the time, it is believed to affect predominantly the elderly female population, and the literature still lacks data on its presence in the younger and male populations. Its relationship with other pelvic floor dysfunctions (PFDs) and sport activity remains an open topic. Thus, the present study surveyed 342 subjects of both genders, ranging from 18 to 39 y/o and with different sport activity levels, to understand the prevalence of PFDs (such as haemorrhoids, anal fissures, involuntary urinary/faecal leakage, and urgency). The results also showed a significative prevalence in younger, sporty, and male people. Approximately one third of the population had urinary incontinence mostly during stress activities (sport activity: 17%, cough/sneeze: 13%). The statistical analysis confirmed a higher prevalence in the cases of a light (32%) and intense (41%) sport activity level and a protective role of sport if practiced between 5 and 10 h/week, with bodybuilding/CrossFit and running seeming to be the riskiest sports. The relationship with the other PFDs showed a statistically significant dependence with most of them, confirming that urinary incontinence cannot be considered a separate problem from the other PFDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA