Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36765809

RESUMO

Breakthrough research in the field of immune checkpoint inhibitors and the development of a human papilloma virus vaccine triggered a plethora of research in the field of cancer immunotherapy. Both had significant effects on the treatment of head and neck squamous cell carcinoma. The advent of preclinical models and multidisciplinary approaches including bioinformatics, genetic engineering, clinical oncology, and immunology helped in the development of tumour-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR) T-cell therapy. Here, we discuss different immunotherapies such as adoptive T-cell transfer, immune checkpoint inhibitors, interleukins, and cancer vaccines for the treatment of head and neck cancer. This review showcases the intrinsic relation between the understanding and implementation of basic biology and clinical practice. We also address potential limitations of each immunotherapy approach and the advantages of personalized immunotherapy. Overall, the aim of this review is to encourage further research in the field of immunotherapy for head and neck cancer.

2.
Elife ; 112022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35108195

RESUMO

Engineered Genetic Incompatibility (EGI) is a method to create species-like barriers to sexual reproduction. It has applications in pest control that mimic Sterile Insect Technique when only EGI males are released. This can be facilitated by introducing conditional female-lethality to EGI strains to generate a sex-sorting incompatible male system (SSIMS). Here, we demonstrate a proof of concept by combining tetracycline-controlled female lethality constructs with a pyramus-targeting EGI line in the model insect Drosophila melanogaster. We show that both functions (incompatibility and sex-sorting) are robustly maintained in the SSIMS line and that this approach is effective for population suppression in cage experiments. Further we show that SSIMS males remain competitive with wild-type males for reproduction with wild-type females, including at the level of sperm competition.


Assuntos
Drosophila melanogaster/genética , Infertilidade/genética , Animais , Animais Geneticamente Modificados , Feminino , Engenharia Genética , Masculino
3.
ACS Synth Biol ; 11(1): 308-316, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34882406

RESUMO

Inadequate management of household and industrial wastes poses major challenges to human and environmental health. Advances in synthetic biology may help address these challenges by engineering biological systems to perform new functions such as biomanufacturing of high-value compounds from low-value waste streams and bioremediation of industrial pollutants. The current emphasis on microbial systems for biomanufacturing, which often requires highly preprocessed inputs and sophisticated infrastructure, is not feasible for many waste streams. Furthermore, concerns about transgene biocontainment have limited the release of engineered microbes or plants for bioremediation. Engineering of animals may provide opportunities for utilizing various waste streams that are not suitable for microbial biomanufacturing while effective transgene biocontainment options should enable in situ bioremediation. Here, we engineer the model insect Drosophila melanogaster to express a functional laccase from the fungus Trametes trogii. Laccase-expressing flies reduced concentrations of the endocrine disruptor bisphenol A by more than 50% when present in their growth media. A lyophilized powder prepared from engineered adult flies retained substantial enzymatic activity, degrading more than 90% of bisphenol A and the textile dye indigo carmine in aqueous solutions. Our results demonstrate that transgenic animals may be used to bioremediate environmental contaminants in vivo and serve as novel production platforms for industrial enzymes. These results support further development of insects, and possibly other animals, as bioproduction platforms and their potential use in bioremediation.


Assuntos
Poluentes Ambientais , Lacase , Animais , Biodegradação Ambiental , Drosophila melanogaster/genética , Lacase/genética , Trametes
4.
PLoS Genet ; 16(11): e1009180, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33137115

RESUMO

The field performance of Sterile Insect Technique (SIT) is improved by sex-sorting and releasing only sterile males. This can be accomplished by resource-intensive separation of males from females by morphology. Alternatively, sex-ratio biasing genetic constructs can be used to selectively remove one sex without the need for manual or automated sorting, but the resulting genetically engineered (GE) control agents would be subject to additional governmental regulation. Here we describe and demonstrate a genetic method for the batch production of non-GE males. This method could be applied to generate the heterogametic sex (XY, or WZ) in any organism with chromosomal sex determination. We observed up to 100% sex-selection with batch cultures of more than 103 individuals. Using a stringent transgene detection assay, we demonstrate the potential of mass production of transgene free males.


Assuntos
Engenharia Genética/métodos , Controle de Insetos/métodos , Controle Biológico de Vetores/métodos , Cromossomos Sexuais/genética , Animais , Animais Geneticamente Modificados/fisiologia , Drosophila melanogaster/genética , Feminino , Masculino , Modelos Animais , Análise para Determinação do Sexo/métodos , Processos de Determinação Sexual/genética , Transgenes/genética
5.
Nat Commun ; 11(1): 4468, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32901021

RESUMO

Speciation constrains the flow of genetic information between populations of sexually reproducing organisms. Gaining control over mechanisms of speciation would enable new strategies to manage wild populations of disease vectors, agricultural pests, and invasive species. Additionally, such control would provide safe biocontainment of transgenes and gene drives. Here, we demonstrate a general approach to create engineered genetic incompatibilities (EGIs) in the model insect Drosophila melanogaster. EGI couples a dominant lethal transgene with a recessive resistance allele. Strains homozygous for both elements are fertile and fecund when they mate with similarly engineered strains, but incompatible with wild-type strains that lack resistant alleles. EGI genotypes can also be tuned to cause hybrid lethality at different developmental life-stages. Further, we demonstrate that multiple orthogonal EGI strains of D. melanogaster can be engineered to be mutually incompatible with wild-type and with each other. EGI is a simple and robust approach in multiple sexually reproducing organisms.


Assuntos
Drosophila melanogaster/genética , Engenharia Genética/métodos , Especiação Genética , Animais , Animais Geneticamente Modificados , Cruzamentos Genéticos , Feminino , Genes de Insetos , Genes Letais , Genótipo , Hibridização Genética , Masculino , Modelos Genéticos , Transgenes
6.
Front Plant Sci ; 11: 210, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194598

RESUMO

Advances in plant synthetic biology promise to introduce novel agricultural products in the near future. 'Molecular farms' will include crops engineered to produce medications, vaccines, biofuels, industrial enzymes, and other high value compounds. These crops have the potential to reduce costs while dramatically increasing scales of synthesis and provide new economic opportunities to farmers. Current transgenic crops may be considered safe given their long-standing use, however, some applications of molecular farming may pose risks to human health and the environment. Unwanted gene flow from engineered crops could potentially contaminate the food supply, and affect wildlife. There is also potential for unwanted gene flow into engineered crops which may alter their ability to produce compounds of interest. Here, we briefly discuss the applications of molecular farming and explore the various genetic and physical methods that can be used for transgene biocontainment. As yet, no technology can be applied to all crop species, such that a combination of approaches may be necessary. Effective biocontainment is needed to enable large scale molecular farming.

7.
PLoS One ; 12(10): e0184629, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29028839

RESUMO

Human Respiratory Syncytial Virus (HRSV) is a leading cause of bronchopneumonia in infants and the elderly. To date, knowledge of viral and host protein interactions within HRSV is limited and are critical areas of research. Here, we show that HRSV Matrix (M) protein interacts with the cellular adaptor protein complex 3 specifically via its medium subunit (AP-3Mu3A). This novel protein-protein interaction was first detected via yeast-two hybrid screen and was further confirmed in a mammalian system by immunofluorescence colocalization and co-immunoprecipitation. This novel interaction is further substantiated by the presence of a known tyrosine-based adaptor protein MU subunit sorting signal sequence, YXXФ: where Ф is a bulky hydrophobic residue, which is conserved across the related RSV M proteins. Analysis of point-mutated HRSV M derivatives indicated that AP-3Mu3A- mediated trafficking is contingent on the presence of the tyrosine residue within the YXXL sorting sequence at amino acids 197-200 of the M protein. AP-3Mu3A is up regulated at 24 hours post-infection in infected cells versus mock-infected HEp2 cells. Together, our data suggests that the AP-3 complex plays a critical role in the trafficking of HRSV proteins specifically matrix in epithelial cells. The results of this study add new insights and targets that may lead to the development of potential antivirals and attenuating mutations suitable for candidate vaccines in the future.


Assuntos
Complexo 3 de Proteínas Adaptadoras/metabolismo , Vírus Sincicial Respiratório Humano/metabolismo , Proteínas da Matriz Viral/metabolismo , Complexo 3 de Proteínas Adaptadoras/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Conservada , Células HeLa , Humanos , Ligação Proteica , Estabilidade Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Transporte Proteico , Vírus Sincicial Respiratório Humano/fisiologia , Regulação para Cima , Proteínas da Matriz Viral/química , Montagem de Vírus
8.
Nat Commun ; 8(1): 883, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29026112

RESUMO

Controlling the exchange of genetic information between sexually reproducing populations has applications in agriculture, eradication of disease vectors, control of invasive species, and the safe study of emerging biotechnology applications. Here we introduce an approach to engineer a genetic barrier to sexual reproduction between otherwise compatible populations. Programmable transcription factors drive lethal gene expression in hybrid offspring following undesired mating events. As a proof of concept, we target the ACT1 promoter of the model organism Saccharomyces cerevisiae using a dCas9-based transcriptional activator. Lethal overexpression of actin results from mating this engineered strain with a strain containing the wild-type ACT1 promoter.Genetic isolation of a genetically modified organism represents a useful strategy for biocontainment. Here the authors use dCas9-VP64-driven gene expression to construct a 'species-like' barrier to reproduction between two otherwise compatible populations.


Assuntos
Actinas/genética , Engenharia Genética/métodos , Isolamento Reprodutivo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Estudo de Prova de Conceito , Saccharomyces cerevisiae/fisiologia , Ativação Transcricional
9.
Microbiology (Reading) ; 163(2): 207-217, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28270265

RESUMO

Rhizosphere-associated Pseudomonas fluorescens WH6 produces the germination-arrest factor 4-formylaminooxyvinylglycine (FVG). FVG has previously been shown to both arrest the germination of weedy grasses and inhibit the growth of the bacterial plant pathogen Erwinia amylovora. Very little is known about the mechanism by which FVG is produced. Although a previous study identified a region of the genome that may be involved in FVG biosynthesis, it has not yet been determined which genes within that region are sufficient and necessary for FVG production. In the current study, we explored the role of each of the putative genes encoded in that region by constructing deletion mutations. Mutant strains were assayed for their ability to produce FVG with a combination of biological assays and TLC analyses. This work defined the core FVG biosynthetic gene cluster and revealed several interesting characteristics of FVG production. We determined that FVG biosynthesis requires two small ORFs of less than 150 nucleotides and that multiple transporters have overlapping but distinct functionality. In addition, two genes in the centre of the biosynthetic gene cluster are not required for FVG production, suggesting that additional products may be produced from the cluster. Transcriptional analysis indicated that at least three active promoters play a role in the expression of genes within this cluster. The results of this study enrich our knowledge regarding the diversity of mechanisms by which bacteria produce non-proteinogenic amino acids like vinylglycines.


Assuntos
Regulação Bacteriana da Expressão Gênica/genética , Glicina/análogos & derivados , Família Multigênica/genética , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Erwinia amylovora/crescimento & desenvolvimento , Germinação/fisiologia , Glicina/biossíntese , Poaceae/microbiologia , Regiões Promotoras Genéticas/genética , Rizosfera , Deleção de Sequência
10.
Microbiology (Reading) ; 160(Pt 11): 2432-2442, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25165126

RESUMO

Pseudomonas fluorescens WH6 secretes a germination-arrest factor (GAF) that we have identified previously as 4-formylaminooxyvinylglycine. GAF irreversibly inhibits germination of the seeds of numerous grassy weeds and selectively inhibits growth of the bacterial plant pathogen Erwinia amylovora. WH6-3, a mutant that has lost the ability to produce GAF, contains a Tn5 insertion in prtR, a gene that has been described previously in some strains of P. fluorescens as encoding a transmembrane regulator. As in these other pseudomonads, in WH6, prtR occurs immediately downstream of prtI, which encodes a protein homologous to extracytoplasmic function (ECF) sigma factors. These two genes have been proposed to function as a dicistronic operon. In this study, we demonstrated that deletion of prtI in WT WH6 had no effect on GAF production. However, deletion of prtI in the WH6-3 mutant overcame the effects of the Tn5 insertion in prtR and restored GAF production in the resulting double mutant. Complementation of the double prtIR mutant with prtI suppressed GAF production. This overall pattern of prtIR regulation was also observed for the activity of an AprX protease. Furthermore, reverse transcription quantitative real-time PCR analysis demonstrated that alterations in GAF production were mirrored by changes in the transcription of two putative GAF biosynthetic genes. Thus, we concluded that PrtI exerted a negative regulatory effect on GAF production, although the mechanism has not yet been determined. In addition, evidence was obtained that the transcription of prtI and prtR in WH6 may be more complex than predicted by existing models.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas fluorescens/metabolismo , Fator sigma/metabolismo , Proteínas de Bactérias/genética , Óperon , Pseudomonas fluorescens/genética , Fator sigma/genética
11.
Microbiology (Reading) ; 159(Pt 1): 36-45, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23125119

RESUMO

The genetic basis of the biosynthesis of the germination-arrest factor (GAF) produced by Pseudomonas fluorescens WH6, and previously identified as 4-formylaminooxyvinylglycine, has been investigated here. In addition to inhibiting the germination of a wide range of grassy weeds, GAF exhibits a selective antimicrobial activity against the bacterial plant pathogen Erwinia amylovora. We utilized the in vitro response of E. amylovora to GAF as a rapid screen for loss-of-function GAF phenotypes generated by transposon mutagenesis. A Tn5 mutant library consisting of 6364 WH6 transformants was screened in this Erwinia assay, resulting in the identification of 18 non-redundant transposon insertion sites that led to loss of GAF production in WH6, as confirmed by TLC analysis. These insertions mapped to five different genes and four intergenic regions. Three of these genes, including two putative regulatory genes (gntR and iopB homologues), were clustered in a 13 kb chromosomal region containing 13 putative ORFs. A GAF mutation identified previously as affecting an aminotransferase also maps to this region. We suggest that three of the genes in this region (a carbamoyltransferase, an aminotransferase and a formyltransferase) encode the enzymes necessary to synthesize dihydroGAF, the putative immediate precursor of GAF in a proposed GAF biosynthetic pathway. RT-qPCR analyses demonstrated that mutations in the gntR and iopB regulatory genes, as well as in a prtR homologue identified earlier as controlling GAF formation, suppressed transcription of at least two of the putative GAF biosynthetic genes (encoding the aminotransferase and formyltransferase) located in this 13 kb region.


Assuntos
Vias Biossintéticas/genética , Glicina/análogos & derivados , Inibidores do Crescimento/biossíntese , Pseudomonas fluorescens/genética , Antibacterianos/biossíntese , Elementos de DNA Transponíveis , Erwinia amylovora/efeitos dos fármacos , Erwinia amylovora/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Glicina/biossíntese , Família Multigênica , Mutagênese Insercional , Pseudomonas fluorescens/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
12.
Curr HIV Res ; 9(1): 1-5, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21198428

RESUMO

RhoA-derived peptides have been shown to have antiviral activity against both human respiratory syncytial virus and human parainfluenza virus-3. The present study investigates the toxicity, anti-HIV-1 activity and mechanism of action of a RhoA-derived peptide (RhoA 77-95). The efficacy of this peptide was compared to a scrambled peptide of the same amino acid composition and Enfuvirtide, a HIV entry inhibitor. Our data show that this RhoA-derived peptide is a non-toxic and effective inhibitor of a CXCR4 tropic strain of HIV-1. We also demonstrate that the mechanism of entry inhibition is likely mediated by polyanionic properties and is dependent on the dimerization of peptides.


Assuntos
Inibidores da Fusão de HIV/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Oligopeptídeos/farmacologia , Internalização do Vírus/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Efeito Citopatogênico Viral/efeitos dos fármacos , Enfuvirtida , Proteína gp41 do Envelope de HIV/farmacologia , Inibidores da Fusão de HIV/toxicidade , Humanos , Testes de Sensibilidade Microbiana/métodos , Oligopeptídeos/genética , Oligopeptídeos/toxicidade , Fragmentos de Peptídeos/farmacologia , Multimerização Proteica , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/toxicidade
13.
Artigo em Inglês | MEDLINE | ID: mdl-20981272

RESUMO

Ekybion is a drug complex of 16 natural extracts and inorganic compounds designed to treat a variety of respiratory pathogens of bacterial and viral origin. It is licensed throughout Europe for the treatment of respiratory tract infections from equine parainfluenza type 3 and equine herpes virus type 1 in equine stables. The purpose of this paper was to test the efficacy of Ekybion on a well-developed animal model of influenza A infection and determine a mode of action. Experiments were performed with Balb/c mice infected with a lethal dose of influenza A/PR/8/34 H1N1 virus and treated with nebulized Ekybion every 8 h in a time-dependant or dose-dependant fashion. These experiments showed that mice treated prior to infection with Ekybion had a higher survival rates (~46%) compared with untreated animals (~0%). Paradoxically, these mice showed no significant difference in lung virus titer or weight loss. There was, however, a decrease in the level of GM-CSF, IL-6, and G-CSF cytokines in the lungs of Ekybion-treated, infected mice. It is possible that decreases in proinflammatory cytokines may have contributed to increased survivorship in Ekybion-treated influenza-infected mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA