Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Pharm Bull ; 47(2): 427-433, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38369341

RESUMO

It has recently been reported that cholangiocyte organoids can be established from primary human hepatocytes. The purpose of this study was to culture the organoids in monolayers on inserts to investigate the biliary excretory capacity of drugs. Cholangiocyte organoids prepared from hepatocytes had significantly higher mRNA expression of CK19, a bile duct epithelial marker, compared to hepatocytes. The organoids also expressed mRNA for efflux transporters involved in biliary excretion of drugs, P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP). The subcellular localization of each protein was observed. These results suggest that the membrane-cultured cholangiocyte organoids are oriented with the upper side being the apical membrane side (A side, bile duct lumen side) and the lower side being the basolateral membrane side (B side, hepatocyte side), and that each efflux transporter is localized to the apical membrane side. Transport studies showed that the permeation rate from the B side to the A side was faster than from the A side to the B side for the substrates of each efflux transporter, but this directionality disappeared in the presence of inhibitor of each transporter. In conclusion, the cholangiocyte organoid monolayer system has the potential to quantitatively evaluate the biliary excretion of drugs. The results of the present study represent an unprecedented system using human cholangiocyte organoids, which may be useful as a screening model to directly quantify the contribution of biliary excretion to the clearance of drugs.


Assuntos
Eliminação Hepatobiliar , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Hepatócitos/metabolismo , RNA Mensageiro/metabolismo
2.
Biol Pharm Bull ; 45(1): 150-153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34980776

RESUMO

The aim of this work is to develop a new assay system for screening biliary excretion drugs. When monolayers of human liver-derived cell lines HepG2 and Huh-7 were grown on an insert membrane, the efflux ratio (ER: ratio of the apparent permeability coefficient in the basal-to-apical direction (Papp,B-to-A) to that in the apical to basal direction (Papp,A-to-B)) of sulfobromophthalein (BSP), a model substrate of multidrug resistance-associated protein 2 (MRP2), was greater than 1.0, indicating transport of BSP in the efflux direction. The efflux transport was significantly suppressed by MK-571, an inhibitor of MRPs, in both cell lines. Expression of MRP2 mRNA in HepG2 and Huh-7 was 3.5- and 1.4-fold higher, respectively, than in primary human hepatocytes, while expression of P-glycoprotein and breast cancer resistance protein mRNAs was markedly lower, supporting the idea that MRP2 is the main mediator of directional BSP transport in this assay system. The advantage of our system is the potential to quantitatively evaluate biliary excretion of MRP2 substrates in vitro.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Proteínas de Neoplasias , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Linhagem Celular , Humanos , Fígado/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA