Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Br J Clin Pharmacol ; 89(1): 316-329, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35981078

RESUMO

AIMS: A parent-metabolite population pharmacokinetic (popPK) model of iberdomide and its pharmacologically active metabolite (M12) was developed and the influence of demographic and disease-related covariates on popPK parameters was assessed based on data from 3 clinical studies of iberdomide (dose range, 0.1-6 mg) in healthy subjects (n = 81) and patients with relapsed and refractory multiple myeloma (n 245). METHODS: Nonlinear mixed effects modelling was used to develop the popPK model based on data from 326 subjects across 3 clinical studies. RESULTS: The pharmacokinetics (PK) of iberdomide were adequately described with a 2-compartment model with first-order absorption and elimination. A first-order conversion rate was used to link the 1-compartment linear elimination metabolite model with the parent model. Subject type (multiple myeloma patients vs. healthy subject) was a statistically significant covariate on apparent clearance and apparent volume of distribution for the central compartment, suggesting different PK between patients with multiple myeloma and healthy subjects. Aspartate aminotransferase and sex were statistically but not clinically relevant covariates on apparent clearance. Metabolite (M12) PK tracked the PK of iberdomide. The metabolite to parent ratio was consistent across doses and combinations. CONCLUSION: The parent-metabolite population PK model adequately described the time course PK data of iberdomide and M12. Iberdomide and M12 PK exposure were not complicated by demographic factors (age [19-82 y], body weight [41-172 kg], body surface area [1.4-2.7 m2 ], body mass index [16.4-59.3 kg/m2 ]), combination (in combination with dexamethasone and daratumumab), mild hepatic, or mild and moderate renal impairments. The model can be used to guide the dosing strategy for special patient population and inform future iberdomide study design.


Assuntos
Mieloma Múltiplo , Humanos , Voluntários Saudáveis , Índice de Massa Corporal , Peso Corporal , Modelos Biológicos
2.
Cancer Metab ; 2: 11, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25097756

RESUMO

BACKGROUND: Alterations in glucose metabolism and epithelial-mesenchymal transition (EMT) constitute two important characteristics of carcinoma progression toward invasive cancer. Despite an extensive characterization of each of them separately, the links between EMT and glucose metabolism of tumor cells remain elusive. Here we show that the neuronal glucose transporter GLUT3 contributes to glucose uptake and proliferation of lung tumor cells that have undergone an EMT. RESULTS: Using a panel of human non-small cell lung cancer (NSCLC) cell lines, we demonstrate that GLUT3 is strongly expressed in mesenchymal, but not epithelial cells, a finding corroborated in hepatoma cells. Furthermore, we identify that ZEB1 binds to the GLUT3 gene to activate transcription. Importantly, inhibiting GLUT3 expression reduces glucose import and the proliferation of mesenchymal lung tumor cells, whereas ectopic expression in epithelial cells sustains proliferation in low glucose. Using a large microarray data collection of human NSCLCs, we determine that GLUT3 expression correlates with EMT markers and is prognostic of poor overall survival. CONCLUSIONS: Altogether, our results reveal that GLUT3 is a transcriptional target of ZEB1 and that this glucose transporter plays an important role in lung cancer, when tumor cells loose their epithelial characteristics to become more invasive. Moreover, these findings emphasize the development of GLUT3 inhibitory drugs as a targeted therapy for the treatment of patients with poorly differentiated tumors.

3.
Proc Natl Acad Sci U S A ; 109(45): 18384-9, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23090995

RESUMO

A chronic inflammatory microenvironment favors tumor progression through molecular mechanisms that are still incompletely defined. In inflammation-induced skin cancers, IL-1 receptor- or caspase-1-deficient mice, or mice specifically deficient for the inflammasome adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD) in myeloid cells, had reduced tumor incidence, pointing to a role for IL-1 signaling and inflammasome activation in tumor development. However, mice fully deficient for ASC were not protected, and mice specifically deficient for ASC in keratinocytes developed more tumors than controls, suggesting that, in contrast to its proinflammatory role in myeloid cells, ASC acts as a tumor-suppressor in keratinocytes. Accordingly, ASC protein expression was lost in human cutaneous squamous cell carcinoma, but not in psoriatic skin lesions. Stimulation of primary mouse keratinocytes or the human keratinocyte cell line HaCaT with UVB induced an ASC-dependent phosphorylation of p53 and expression of p53 target genes. In HaCaT cells, ASC interacted with p53 at the endogenous level upon UVB irradiation. Thus, ASC in different tissues may influence tumor growth in opposite directions: it has a proinflammatory role in infiltrating cells that favors tumor development, but it also limits keratinocyte proliferation in response to noxious stimuli, possibly through p53 activation, which helps suppressing tumors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/metabolismo , Epitélio/patologia , Inflamassomos/metabolismo , Neoplasias Cutâneas/patologia , Pele/patologia , 9,10-Dimetil-1,2-benzantraceno , Animais , Proteínas Reguladoras de Apoptose , Proteínas Adaptadoras de Sinalização CARD , Caspase 1/deficiência , Caspase 1/metabolismo , Proliferação de Células , Transformação Celular Neoplásica/patologia , Citocinas/biossíntese , Proteínas do Citoesqueleto/deficiência , Regulação para Baixo , Epitélio/metabolismo , Humanos , Inflamação/patologia , Queratinócitos/metabolismo , Queratinócitos/patologia , Camundongos , Camundongos Knockout , Células Mieloides/metabolismo , Células Mieloides/patologia , Neoplasias de Células Escamosas/patologia , Especificidade de Órgãos , Receptores de Interleucina-1/deficiência , Receptores de Interleucina-1/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/prevenção & controle , Acetato de Tetradecanoilforbol , Microambiente Tumoral , Proteína Supressora de Tumor p53/metabolismo
4.
Immunity ; 36(3): 388-400, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22444631

RESUMO

Through their capacity to sense danger signals and to generate active interleukin-1ß (IL-1ß), inflammasomes occupy a central role in the inflammatory response. In contrast to IL-1ß, little is known about how IL-1α is regulated. We found that all inflammasome activators also induced the secretion of IL-1α, leading to the cosecretion of both IL-1 cytokines. Depending on the type of inflammasome activator, release of IL-1α was inflammasome dependent or independent. Calcium influx induced by the opening of cation channels was sufficient for the inflammasome-independent IL-1α secretion. In both cases, IL-1α was released primarily in a processed form, resulting from intracellular cleavage by calpain-like proteases. Inflammasome-caspase-1-dependent release of IL-1α and IL-1ß was independent of caspase-1 catalytic activity, defining a mode of action for caspase-1. Because inflammasomes contribute to the pathology of numerous chronic inflammatory diseases such as gout and diabetes, IL-1α antagonists may be beneficial in the treatment of these disorders.


Assuntos
Caspase 1/metabolismo , Inflamassomos/imunologia , Interleucina-1alfa/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/imunologia , Proteínas de Ligação ao Cálcio/metabolismo , Morte Celular/imunologia , Proteínas de Ligação a DNA , Feminino , Humanos , Inflamassomos/metabolismo , Interleucina-1alfa/antagonistas & inibidores , Interleucina-1alfa/metabolismo , Interleucina-1beta/biossíntese , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/metabolismo , Peritonite/imunologia , Processamento de Proteína Pós-Traducional , Receptores de Interleucina-1/metabolismo , Transdução de Sinais/imunologia
5.
PLoS Pathog ; 7(9): e1002232, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21931550

RESUMO

The highly pathogenic Old World arenavirus Lassa virus (LASV) and the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) use α-dystroglycan as a cellular receptor and enter the host cell by an unusual endocytotic pathway independent of clathrin, caveolin, dynamin, and actin. Upon internalization, the viruses are delivered to acidified endosomes in a Rab5-independent manner bypassing classical routes of incoming vesicular trafficking. Here we sought to identify cellular factors involved in the unusual and largely unknown entry pathway of LASV and LCMV. Cell entry of LASV and LCMV required microtubular transport to late endosomes, consistent with the low fusion pH of the viral envelope glycoproteins. Productive infection with recombinant LCMV expressing LASV envelope glycoprotein (rLCMV-LASVGP) and LCMV depended on phosphatidyl inositol 3-kinase (PI3K) as well as lysobisphosphatidic acid (LBPA), an unusual phospholipid that is involved in the formation of intraluminal vesicles (ILV) of the multivesicular body (MVB) of the late endosome. We provide evidence for a role of the endosomal sorting complex required for transport (ESCRT) in LASV and LCMV cell entry, in particular the ESCRT components Hrs, Tsg101, Vps22, and Vps24, as well as the ESCRT-associated ATPase Vps4 involved in fission of ILV. Productive infection with rLCMV-LASVGP and LCMV also critically depended on the ESCRT-associated protein Alix, which is implicated in membrane dynamics of the MVB/late endosomes. Our study identifies crucial cellular factors implicated in Old World arenavirus cell entry and indicates that LASV and LCMV invade the host cell passing via the MVB/late endosome. Our data further suggest that the virus-receptor complexes undergo sorting into ILV of the MVB mediated by the ESCRT, possibly using a pathway that may be linked to the cellular trafficking and degradation of the cellular receptor.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Vírus Lassa/patogenicidade , Vírus da Coriomeningite Linfocítica/patogenicidade , Corpos Multivesiculares/virologia , Internalização do Vírus , ATPases Associadas a Diversas Atividades Celulares , Animais , Transporte Biológico , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Distroglicanas/metabolismo , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Endossomos/metabolismo , Células HEK293 , Humanos , Immunoblotting , Lisofosfolipídeos/metabolismo , Monoglicerídeos/metabolismo , Mutação , Fosfatos de Fosfatidilinositol/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Receptores Virais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transferrina/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA