Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Development ; 150(2)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36621005

RESUMO

Gene duplication events can drive evolution by providing genetic material for new gene functions, and they create opportunities for diverse developmental strategies to emerge between species. To study the contribution of duplicated genes to human early development, we examined the evolution and function of NANOGP1, a tandem duplicate of the transcription factor NANOG. We found that NANOGP1 and NANOG have overlapping but distinct expression profiles, with high NANOGP1 expression restricted to early epiblast cells and naïve-state pluripotent stem cells. Sequence analysis and epitope-tagging revealed that NANOGP1 is protein coding with an intact homeobox domain. The duplication that created NANOGP1 occurred earlier in primate evolution than previously thought and has been retained only in great apes, whereas Old World monkeys have disabled the gene in different ways, including homeodomain point mutations. NANOGP1 is a strong inducer of naïve pluripotency; however, unlike NANOG, it is not required to maintain the undifferentiated status of human naïve pluripotent cells. By retaining expression, sequence and partial functional conservation with its ancestral copy, NANOGP1 exemplifies how gene duplication and subfunctionalisation can contribute to transcription factor activity in human pluripotency and development.


Assuntos
Genes Homeobox , Células-Tronco Pluripotentes , Animais , Humanos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
iScience ; 24(3): 102153, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33665571

RESUMO

Induced pluripotency provides a tool to explore mechanisms underlying establishment, maintenance, and differentiation of naive pluripotent stem cells (nPSCs). Here, we report that self-renewal of nPSCs requires minimal Sox2 expression (Sox2-low). Sox2-low nPSCs do not show impaired neuroectoderm specification and differentiate efficiently in vitro into all embryonic germ lineages. Strikingly, upon the removal of self-renewing cues Sox2-low nPSCs differentiate into both embryonic and extraembryonic cell fates in vitro and in vivo. This differs from previous studies which only identified conditions that allowed cells to differentiate to one fate or the other. At the single-cell level self-renewing Sox2-low nPSCs exhibit a naive molecular signature. However, they display a nearer trophoblast identity than controls and decreased ability of Oct4 to bind naïve-associated regulatory sequences. In sum, this work defines wild-type levels of Sox2 as a restrictor of developmental potential and suggests perturbation of naive network as a mechanism to increase cell plasticity.

3.
Cell Stem Cell ; 25(3): 388-406.e8, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31422912

RESUMO

Understanding how cell identity transitions occur and whether there are multiple paths between the same beginning and end states are questions of wide interest. Here we show that acquisition of naive pluripotency can follow transcriptionally and mechanistically distinct routes. Starting from post-implantation epiblast stem cells (EpiSCs), one route advances through a mesodermal state prior to naive pluripotency induction, whereas another transiently resembles the early inner cell mass and correspondingly gains greater developmental potency. These routes utilize distinct signaling networks and transcription factors but subsequently converge on the same naive endpoint, showing surprising flexibility in mechanisms underlying identity transitions and suggesting that naive pluripotency is a multidimensional attractor state. These route differences are reconciled by precise expression of Oct4 as a unifying, essential, and sufficient feature. We propose that fine-tuned regulation of this "transition factor" underpins multidimensional access to naive pluripotency, offering a conceptual framework for understanding cell identity transitions.


Assuntos
Massa Celular Interna do Blastocisto/fisiologia , Camadas Germinativas/fisiologia , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/fisiologia , Animais , Diferenciação Celular , Linhagem Celular , Plasticidade Celular , Reprogramação Celular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Camundongos , Camundongos Endogâmicos C57BL , Fator 3 de Transcrição de Octâmero/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA