Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36798161

RESUMO

Muscle fitness and mass deteriorate under the conditions of obesity and aging for reasons yet to be fully elucidated. Herein, we describe a novel pathway linking peripheral nutrient sensing and skeletal muscle function through the sweet taste receptor TAS1R2 and the involvement of ERK2-PARP1-NAD signaling axis. Muscle-specific deletion of TAS1R2 (mKO) in mice produced elevated NAD levels due to suppressed PARP1 activity, improved mitochondrial function, increased muscle mass and strength, and prolonged running endurance. Deletion of TAS1R2 in obese or aged mice also ameliorated the decline in muscle mass and fitness arising from these conditions. Remarkably, partial loss-of-function of TAS1R2 (rs35874116) in older, obese humans recapitulated the healthier muscle phenotype displayed by mKO mice in response to exercise training. Our findings show that inhibition of the TAS1R2 signaling in skeletal muscle is a promising therapeutic approach to preserve muscle mass and function.

2.
Biomedicines ; 10(1)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35052799

RESUMO

BACKGROUND: Saccharin is a common artificial sweetener and a bona fide ligand for sweet taste receptors (STR). STR can regulate insulin secretion in beta cells, so we investigated whether saccharin can stimulate insulin secretion dependent on STR and the activation of phospholipase C (PLC) signaling. METHODS: We performed in vivo and in vitro approaches in mice and cells with loss-of-function of STR signaling and specifically assessed the involvement of a PLC signaling cascade using real-time biosensors and calcium imaging. RESULTS: We found that the ingestion of a physiological amount of saccharin can potentiate insulin secretion dependent on STR. Similar to natural sweeteners, saccharin triggers the activation of the PLC signaling cascade, leading to calcium influx and the vesicular exocytosis of insulin. The effects of saccharin also partially require transient receptor potential cation channel M5 (TRPM5) activity. CONCLUSIONS: Saccharin ingestion may transiently potentiate insulin secretion through the activation of the canonical STR signaling pathway. These physiological effects provide a framework for understanding the potential health impact of saccharin use and the contribution of STR in peripheral tissues.

3.
Nat Commun ; 10(1): 3042, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31316054

RESUMO

Stress resistance and longevity are positively correlated but emerging evidence indicates that they are physiologically distinct. Identifying factors with distinctive roles in these processes is challenging because pro-longevity genes often enhance stress resistance. We demonstrate that TCER-1, the Caenorhabditis elegans homolog of human transcription elongation and splicing factor, TCERG1, has opposite effects on lifespan and stress resistance. We previously showed that tcer-1 promotes longevity in germline-less C. elegans and reproductive fitness in wild-type animals. Surprisingly, tcer-1 mutants exhibit exceptional resistance against multiple stressors, including infection by human opportunistic pathogens, whereas, TCER-1 overexpression confers immuno-susceptibility. TCER-1 inhibits immunity only during fertile stages of life. Elevating its levels ameliorates the fertility loss caused by infection, suggesting that TCER-1 represses immunity to augment fecundity. TCER-1 acts through repression of PMK-1 as well as PMK-1-independent factors critical for innate immunity. Our data establish key roles for TCER-1 in coordinating immunity, longevity and fertility, and reveal mechanisms that distinguish length of life from functional aspects of aging.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica/fisiologia , Imunidade Inata/genética , Longevidade/genética , Fatores de Alongamento de Peptídeos/metabolismo , Estresse Fisiológico/imunologia , Envelhecimento/genética , Envelhecimento/imunologia , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/imunologia , Suscetibilidade a Doenças/imunologia , Fertilidade/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Modelos Animais , Mutação , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/imunologia , Estresse Fisiológico/genética
4.
J Comp Neurol ; 521(13): 2947-65, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23504871

RESUMO

Ciliary neurotrophic factor (CNTF) administration maintains, protects, and promotes the regeneration of both motor neurons (MNs) and skeletal muscle in a wide variety of models. Expression of CNTF receptor α (CNTFRα), an essential CNTF receptor component, is greatly increased in skeletal muscle following neuromuscular insult. Together the data suggest that muscle CNTFRα may contribute to neuromuscular maintenance, protection, and/or regeneration in vivo. To directly address the role of muscle CNTFRα, we selectively-depleted it in vivo by using a "floxed" CNTFRα mouse line and a gene construct (mlc1f-Cre) that drives the expression of Cre specifically in skeletal muscle. The resulting mice were challenged with sciatic nerve crush. Counting of nerve axons and retrograde tracing of MNs indicated that muscle CNTFRα contributes to MN axonal regeneration across the lesion site. Walking track analysis indicated that muscle CNTFRα is also required for normal recovery of motor function. However, the same muscle CNTFRα depletion unexpectedly had no detected effect on the maintenance or regeneration of the muscle itself, even though exogenous CNTF has been shown to affect these functions. Similarly, MN survival and lesion-induced terminal sprouting were unaffected. Therefore, muscle CNTFRα is an interesting new example of a muscle growth factor receptor that, in vivo under physiological conditions, contributes much more to neuronal regeneration than to the maintenance or regeneration of the muscle itself. This novel form of muscle-neuron interaction also has implications in the therapeutic targeting of the neuromuscular system in MN disorders and following nerve injury. J. Comp. Neurol. 521: 2947-2965, 2013. © 2013 Wiley Periodicals, Inc.


Assuntos
Subunidade alfa do Receptor do Fator Neutrófico Ciliar/uso terapêutico , Regeneração Nervosa/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Neuropatia Ciática , Análise de Variância , Animais , Axônios/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Peso Corporal/efeitos dos fármacos , Peso Corporal/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/genética , Modelos Animais de Doenças , Lateralidade Funcional , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Contração Muscular/efeitos dos fármacos , Contração Muscular/genética , Fibras Musculares Esqueléticas/patologia , Regeneração Nervosa/genética , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/patologia , RNA Mensageiro , Receptores Colinérgicos/metabolismo , Recuperação de Função Fisiológica/genética , Neuropatia Ciática/tratamento farmacológico , Neuropatia Ciática/patologia , Neuropatia Ciática/fisiopatologia , Estilbamidinas , Caminhada/fisiologia
5.
J Neurosci ; 33(3): 1241-58, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23325260

RESUMO

Appropriately targeted manipulation of endogenous neural stem progenitor (NSP) cells may contribute to therapies for trauma, stroke, and neurodegenerative disease. A prerequisite to such therapies is a better understanding of the mechanisms regulating adult NSP cells in vivo. Indirect data suggest that endogenous ciliary neurotrophic factor (CNTF) receptor signaling may inhibit neuronal differentiation of NSP cells. We challenged subventricular zone (SVZ) cells in vivo with low concentrations of CNTF to anatomically characterize cells containing functional CNTF receptors. We found that type B "stem" cells are highly responsive, whereas type C "transit-amplifying" cells and type A neuroblasts are remarkably unresponsive, as are GFAP(+) astrocytes found outside the SVZ. CNTF was identified in a subset of type B cells that label with acute BrdU administration. Disruption of in vivo CNTF receptor signaling in SVZ NSP cells, with a "floxed" CNTF receptor α (CNTFRα) mouse line and a gene construct driving Cre recombinase (Cre) expression in NSP cells, led to increases in SVZ-associated neuroblasts and new olfactory bulb neurons, as well as a neuron subtype-specific, adult-onset increase in olfactory bulb neuron populations. Adult-onset receptor disruption in SVZ NSP cells with a recombinant adeno-associated virus (AAV-Cre) also led to increased neurogenesis. However, the maintenance of type B cell populations was apparently unaffected by the receptor disruption. Together, the data suggest that endogenous CNTF receptor signaling in type B stem cells inhibits adult neurogenesis, and further suggest that the regulation may occur in a neuron subtype-specific manner.


Assuntos
Ventrículos Laterais/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Prosencéfalo/fisiologia , Receptor do Fator Neutrófico Ciliar/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Fator Neurotrófico Ciliar/metabolismo , Ventrículos Laterais/citologia , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Receptor do Fator Neutrófico Ciliar/genética , Transdução de Sinais/fisiologia
6.
J Biol Chem ; 288(2): 759-69, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23223230

RESUMO

In yeast, Adh1 (alcohol dehydrogenase 1) is an abundant zinc-binding protein that is required for the conversion of acetaldehyde to ethanol. Through transcriptome profiling of the Schizosaccharomyces pombe genome, we identified a natural antisense transcript at the adh1 locus that is induced in response to zinc limitation. This antisense transcript (adh1AS) shows a reciprocal expression pattern to that of the adh1 mRNA partner. In this study, we show that increased expression of the adh1AS transcript in zinc-limited cells is necessary for the repression of adh1 gene expression and that the increased level of the adh1AS transcript in zinc-limited cells is a result of two mechanisms. At the transcriptional level, the adh1AS transcript is expressed at a high level in zinc-limited cells. In addition to this transcriptional control, adh1AS transcripts preferentially accumulate in zinc-limited cells when the adh1AS transcript is expressed from a constitutive promoter. This secondary mechanism requires the simultaneous expression of adh1. Our studies reveal how multiple mechanisms can synergistically control the ratio of sense to antisense transcripts and highlight a novel mechanism by which adh1 gene expression can be controlled by cellular zinc availability.


Assuntos
Álcool Desidrogenase/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Genes Fúngicos , RNA Mensageiro/genética , Schizosaccharomyces/genética , Zinco/fisiologia , Reação em Cadeia da Polimerase , RNA Antissenso/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA