Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Commun ; 5(1): fcad010, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36756307

RESUMO

Huntingtin-lowering approaches that target huntingtin expression are a major focus for therapeutic intervention for Huntington's disease. When the cytosine, adenine and guanine repeat is expanded, the huntingtin pre-mRNA is alternatively processed to generate the full-length huntingtin and HTT1a transcripts. HTT1a encodes the aggregation-prone and highly pathogenic exon 1 huntingtin protein. In evaluating huntingtin-lowering approaches, understanding how the targeting strategy modulates levels of both transcripts and the huntingtin protein isoforms that they encode will be essential. Given the aggregation-propensity of exon 1 huntingtin, the impact of a given strategy on the levels and subcellular location of aggregated huntingtin will need to be determined. We have developed and applied sensitive molecular approaches to monitor the levels of aggregated and soluble huntingtin isoforms in tissue lysates. We have used these, in combination with immunohistochemistry, to map the appearance and accumulation of aggregated huntingtin throughout the CNS of zQ175 mice, a model of Huntington's disease frequently chosen for preclinical studies. Aggregation analyses were performed on tissues from zQ175 and wild-type mice at monthly intervals from 1 to 6 months of age. We developed three homogeneous time-resolved fluorescence assays to track the accumulation of aggregated huntingtin and showed that two of these were specific for the exon 1 huntingtin protein. Collectively, the homogeneous time-resolved fluorescence assays detected huntingtin aggregation in the 10 zQ175 CNS regions by 1-2 months of age. Immunohistochemistry with the polyclonal S830 anti-huntingtin antibody showed that nuclear huntingtin aggregation, in the form of a diffuse nuclear immunostain, could be visualized in the striatum, hippocampal CA1 region and layer IV of the somatosensory cortex by 2 months. That this diffuse nuclear immunostain represented aggregated huntingtin was confirmed by immunohistochemistry with a polyglutamine-specific antibody, which required formic acid antigen retrieval to expose its epitope. By 6 months of age, nuclear and cytoplasmic inclusions were widely distributed throughout the brain. Homogeneous time-resolved fluorescence analysis showed that the comparative levels of soluble exon 1 huntingtin between CNS regions correlated with those for huntingtin aggregation. We found that soluble exon 1 huntingtin levels decreased over the 6-month period, whilst those of soluble full-length mutant huntingtin remained unchanged, data that were confirmed for the cortex by immunoprecipitation and western blotting. These data support the hypothesis that exon 1 huntingtin initiates the aggregation process in knock-in mouse models and pave the way for a detailed analysis of huntingtin aggregation in response to huntingtin-lowering treatments.

2.
Front Neurosci ; 15: 682172, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239412

RESUMO

The deposition of mutant huntingtin (mHTT) protein aggregates in neurons of patients is a pathological hallmark of Huntington's disease (HD). Previous investigations in cell-free and cell-based disease models showed mHTT exon-1 (mHTTex1) fragments with pathogenic polyglutamine (polyQ) tracts (>40 glutamines) to self-assemble into highly stable, ß-sheet-rich protein aggregates with a fibrillar morphology. HD knock-in mouse models have not been extensively studied with regard to mHTT aggregation. They endogenously produce full-length mHTT with a pathogenic polyQ tract as well as mHTTex1 fragments. Here, we demonstrate that seeding-competent, fibrillar mHTT aggregates can be readily detected in brains of zQ175 knock-in HD mice. To do this, we applied a highly sensitive FRET-based protein amplification assay that is capable of detecting seeding-competent mHTT aggregate species down to the femtomolar range. Furthermore, we show that fibrillar structures with an average length of ∼200 nm can be enriched with aggregate-specific mouse and human antibodies from zQ175 mouse brain extracts through immunoprecipitations, confirming that such structures are formed in vivo. Together these studies indicate that small, fibrillar, seeding-competent mHTT structures are prominent aggregate species in brains of zQ175 mice.

3.
Sci Rep ; 11(1): 9117, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33907289

RESUMO

Huntington's disease (HD) is a devastating neurodegenerative disorder, caused by a CAG/polyglutamine repeat expansion, that results in the aggregation of the huntingtin protein, culminating in the deposition of inclusion bodies in HD patient brains. We have previously shown that the heat shock response becomes impaired with disease progression in mouse models of HD. The disruption of this inducible arm of the proteostasis network is likely to exacerbate the pathogenesis of this protein-folding disease. To allow a rapid and more comprehensive analysis of the heat shock response, we have developed, and validated, a 16-plex QuantiGene assay that allows the expression of Hsf1 and nine heat shock genes, to be measured directly, and simultaneously, from mouse tissue. We used this QuantiGene assay to show that, following pharmacological activation in vivo, the heat shock response impairment in tibialis anterior, brain hemispheres and striatum was comparable between zQ175 and R6/2 mice. In contrast, although a heat shock impairment could be detected in R6/2 cortex, this was not apparent in the cortex from zQ175 mice. Whilst the mechanism underlying this impairment remains unknown, our data indicated that it is not caused by a reduction in HSF1 levels, as had been reported.


Assuntos
Encéfalo/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Fatores de Transcrição de Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Doença de Huntington/fisiopatologia , Fatores Etários , Animais , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Feminino , Fatores de Transcrição de Choque Térmico/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Resposta ao Choque Térmico/genética , Proteína Huntingtina/genética , Doença de Huntington/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Piridonas/farmacologia , Pirimidinas/farmacologia , Reprodutibilidade dos Testes
4.
Sci Rep ; 10(1): 14057, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32820193

RESUMO

We have previously shown that the incomplete splicing of exon 1 to exon 2 of the HTT gene results in the production of a small polyadenylated transcript (Httexon1) that encodes the highly pathogenic exon 1 HTT protein. There is evidence to suggest that the splicing factor SRSF6 is involved in the mechanism that underlies this aberrant splicing event. Therefore, we set out to test this hypothesis, by manipulating SRSF6 levels in Huntington's disease models in which an expanded CAG repeat had been knocked in to the endogenous Htt gene. We began by generating mice that were knocked out for Srsf6, and demonstrated that reduction of SRSF6 to 50% of wild type levels had no effect on incomplete splicing in zQ175 knockin mice. We found that nullizygosity for Srsf6 was embryonic lethal, and therefore, to decrease SRSF6 levels further, we established mouse embryonic fibroblasts (MEFs) from wild type, zQ175, and zQ175::Srsf6+/- mice and transfected them with an Srsf6 siRNA. The incomplete splicing of Htt was recapitulated in the MEFs and we demonstrated that ablation of SRSF6 did not modulate the levels of the Httexon1 transcript. We conclude that SRSF6 is not required for the incomplete splicing of HTT in Huntington's disease.


Assuntos
Inativação Gênica , Proteína Huntingtina/genética , Doença de Huntington/genética , Fosfoproteínas/genética , Splicing de RNA , Fatores de Processamento de Serina-Arginina/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Éxons , Humanos , Camundongos , Camundongos Knockout
5.
Sci Rep ; 9(1): 16137, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31695145

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by a CAG repeat expansion within exon 1 of the huntingtin (HTT) gene. HTT mRNA contains 67 exons and does not always splice between exon 1 and exon 2 leading to the production of a small polyadenylated HTTexon1 transcript, and the full-length HTT mRNA has three 3'UTR isoforms. We have developed a QuantiGene multiplex panel for the simultaneous detection of all of these mouse Htt transcripts directly from tissue lysates and demonstrate that this can replace the more work-intensive Taqman qPCR assays. We have applied this to the analysis of brain regions from the zQ175 HD mouse model and wild type littermates at two months of age. We show that the incomplete splicing of Htt occurs throughout the brain and confirm that this originates from the mutant and not endogenous Htt allele. Given that HTTexon1 encodes the highly pathogenic exon 1 HTT protein, it is essential that the levels of all Htt transcripts can be monitored when evaluating HTT lowering approaches. Our QuantiGene panel will allow the rapid comparative assessment of all Htt transcripts in cell lysates and mouse tissues without the need to first extract RNA.


Assuntos
Encéfalo/metabolismo , Ensaio de Amplificação de Sinal de DNA Ramificado/métodos , Ensaios de Triagem em Larga Escala/métodos , Proteína Huntingtina/genética , Proteínas do Tecido Nervoso/genética , Splicing de RNA , Regiões 3' não Traduzidas/genética , Animais , Modelos Animais de Doenças , Éxons/genética , Proteína Huntingtina/biossíntese , Íntrons/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos , Proteínas do Tecido Nervoso/biossíntese , Especificidade de Órgãos , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA