Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0303691, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843264

RESUMO

Both sexually selected traits and mate preferences for these traits can be context dependent, yet how variation in preferred traits could select for context dependent preferences has rarely been examined. The signal reliability hypothesis predicts that mate preferences vary across contexts (e.g., environments) in relation to the reliability of the information preferred traits provide in those contexts. Extensive variation in copy number of mc4r B alleles on the Y-chromosome that associates with male size in Xiphophorus multilineatus allowed us to use a split-sibling design to determine if male size is more likely to provide information about male genotype (i.e., dam) when males were reared in a warm as compared to a cold environment. We then examined strength of preference for male size by females reared in the same two environments. We found that males were larger in the cold environment, but male size was more variable across dams in the warm environment, and therefore male size would be a more reliable indicator of dam (i.e., genetics) in the warm environment. Females reared in the warm environment had stronger mate preferences based on male size than cold reared females, with a significant influence of dam on strength of preference. Therefore, strength of female preference for male size was influenced by the temperature in which they were reared, with the direction of the difference across treatments supporting the signal reliability hypothesis. Understanding how the reliability of male traits can select for contextual variation in the strength of the female mate preferences will further our discovery of adaptive mate preferences. For example, a relationship between the strength of a female's mate preference and their growth rates was detected in the context where females had a preference based on male size, supporting a hypothesis from previous work with this species of disassortative mating in relation to growth rates to mitigate a documented growth-mortality tradeoff.


Assuntos
Preferência de Acasalamento Animal , Temperatura , Animais , Feminino , Masculino , Preferência de Acasalamento Animal/fisiologia , Ciprinodontiformes/fisiologia , Tamanho Corporal , Receptor Tipo 4 de Melanocortina/genética , Genótipo
2.
J Vis Exp ; (86)2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24747778

RESUMO

Due to the clinical importance of hearing and balance disorders in man, model organisms such as the zebrafish have been used to study lateral line development and regeneration. The zebrafish is particularly attractive for such studies because of its rapid development time and its high regenerative capacity. To date, zebrafish studies of lateral line regeneration have mainly utilized fish of the embryonic and larval stages because of the lower number of neuromasts at these stages. This has made quantitative analysis of lateral line regeneration/and or development easier in the earlier developmental stages. Because many zebrafish models of neurological and non-neurological diseases are studied in the adult fish and not in the embryo/larvae, we focused on developing a quantitative lateral line regenerative assay in adult zebrafish so that an assay was available that could be applied to current adult zebrafish disease models. Building on previous studies by Van Trump et al. that described procedures for ablation of hair cells in adult Mexican blind cave fish and zebrafish (Danio rerio), our assay was designed to allow quantitative comparison between control and experimental groups. This was accomplished by developing a regenerative neuromast standard curve based on the percent of neuromast reappearance over a 24 hr time period following gentamicin-induced necrosis of hair cells in a defined region of the lateral line. The assay was also designed to allow extension of the analysis to the individual hair cell level when a higher level of resolution is required.


Assuntos
Sistema da Linha Lateral/fisiologia , Regeneração/fisiologia , Peixe-Zebra/fisiologia , Animais , Modelos Animais de Doenças
3.
Diabetes ; 63(9): 3069-76, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24722243

RESUMO

Studies from human cells, rats, and zebrafish have documented that hyperglycemia (HG) induces the demethylation of specific cytosines throughout the genome. We previously documented that a subset of these changes become permanent and may provide, in part, a mechanism for the persistence of complications referred to as the metabolic memory phenomenon. In this report, we present studies aimed at elucidating the molecular machinery that is responsible for the HG-induced DNA demethylation observed. To this end, RNA expression and enzymatic activity assays indicate that the ten-eleven translocation (Tet) family of enzymes are activated by HG. Furthermore, through the detection of intermediates generated via conversion of 5-methyl-cytosine back to the unmethylated form, the data were consistent with the use of the Tet-dependent iterative oxidation pathway. In addition, evidence is provided that the activity of the poly(ADP-ribose) polymerase (Parp) enzyme is required for activation of Tet activity because the use of a Parp inhibitor prevented demethylation of specific loci and the accumulation of Tet-induced intermediates. Remarkably, this inhibition was accompanied by a complete restoration of the tissue regeneration deficit that is also induced by HG. The ultimate goal of this work is to provide potential new avenues for therapeutic discovery.


Assuntos
DNA/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Dioxigenases/metabolismo , Hiperglicemia/fisiopatologia , Inibidores de Poli(ADP-Ribose) Polimerases , Proteínas de Peixe-Zebra/metabolismo , Nadadeiras de Animais/fisiologia , Animais , Metilação de DNA , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Isoquinolinas , Quinolinas/farmacologia , Regeneração/efeitos dos fármacos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA