Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Chem ; 16(1): 17, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35313931

RESUMO

BACKGROUND: Human and veterinary antibiotics are typically discharged as parent chemicals in urine or feces and are known to be released into the environment via wastewater treatment plants (WWTPs). Several research investigations have recently been conducted on the removal and bioremediation of pharmaceutical and personal care products (PPCPs) disposed of in wastewater. RESULTS: SiNP-Cu, a chelating matrix, was produced by delaying and slowing 1.5-dimethyl-1H-pyrazole-3-carbaldehyde on silica gel from functionalized with 3-aminopropyltrimethoxysilane. The prepared sorbent material was characterized using several techniques including BET surface area, FT-IR spectroscopy, Scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and nitrogen adsorption-desorption isotherm. The pseudo-second-order model provided the best correlation due to the big match between the experimental and theoretical of different adsorption coefficients. The Langmuir and Freundlich adsorption models were used and the study showed a better match with the Freundlich model with a capacity of removal reached up to 420 mg g-1. The removal capacity was dependent on pH and increased by increasing pH. The removal percentage reached 91;5% at pH = 8. The adsorbent demonstrated a high percentage removal of TMP, reaching more than 94% when increased pH. The sample was simply regenerated by soaking it for a few minutes in 1 N HCl and drying it. The sorbent was repeated five times with no discernible decrease in removal capacity. The thermodynamic study also showed endothermic, increasing randomness and not spontaneous. The free energy was 2.71 kJ/mol at 320 K. The findings of the DFT B3LYP/6-31 + g (d, p) local reactivity descriptors revealed that nitrogen atoms and π-electrons of the benzene and pyrimidine rings in the TMP are responsible for the adsorption process with the SiNP surface. The negative values of the adsorption energies obtained by molecular dynamic simulation indicated the spontaneity of the adsorption process. CONCLUSION: The global reactivity indices prove that TMP is stable and it can be removed from wastewater using SiNP surface. The results of the local reactivity indices concluded that the active centers for the adsorption process are the nitrogen atoms and the π-electrons of the pyrimidine and benzene rings. Furthermore, the positive value of the maximum charge transfer number (ΔN) proves that TMP has a great tendency to donate electrons to SiNP surface during the process of adsorption.

2.
Front Chem ; 9: 709600, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336793

RESUMO

The expanding amount of remaining drug substances in wastewater adversely affects both the climate and human well-being. In the current investigation, we developed new cellulose acetic acid derivation/zeolite fiber as an effective technique to eliminate erythromycin (ERY) from wastewater. The number of interchangeable sites in the adsorbent structures and the ratio of ERY to the three adsorbents were identified as the main reasons for the reduction in adsorption as the initial ERY concentrations increased. Additionally, for all adsorbents, the pseudo-second-order modeling showed better fitting for the adsorption than the pseudo-first-order modeling. However, the findings obtained in the pseudo-first-order model were still enough for explaining the sorption kinetics of ERY, showing that the surface displayed all chemisorption and physi-sorption adsorption processes by both adsorbents. The R 2 for the second order was very close to 1 for the three adsorbents in the case of pseudo-second-order. The adsorption capacity reached 17.76 mg/g. The three adsorbents showed negative values of ΔH, and these values were -6,200, -8,500, and -9600 kJ/mol for zeolite, CA, and ZCA, respectively, and this shows that the adsorption is exothermic. The desorption analysis shows no substantial loss of adsorption site after three trials, indicating higher stability and resilience of the three adsorbents, indicating a strong repeatability of their possible use in adsorption without contaminating the environment. In addition, the chemical attitude and possible donor-acceptor interactions of ERY were assessed by the quantum chemical parameters (QCPs) and NBO analysis performed, at the HF/6-311G** calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA