Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 78(9): 2228-2241, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37522316

RESUMO

BACKGROUND: Biofilms are the leading cause of nosocomial infections and are hard to eradicate due to their inherent antimicrobial resistance. Candida albicans is the leading cause of nosocomial fungal infections and is frequently co-isolated with the bacterium Pseudomonas aeruginosa from biofilms in the cystic fibrosis lung and severe burn wounds. The presence of C. albicans in multispecies biofilms is associated with enhanced antibacterial resistance, which is largely mediated through fungal extracellular carbohydrates sequestering the antibiotics. However, significantly less is known regarding the impact of polymicrobial biofilms on antifungal resistance. RESULTS: Here we show that, in dual-species biofilms, P. aeruginosa enhances the susceptibility of C. albicans to amphotericin B, an effect that was biofilm specific. Transcriptional analysis combined with gene ontology enrichment analysis identified several C. albicans processes associated with oxidative stress to be differentially regulated in dual-species biofilms, suggesting that P. aeruginosa exerts oxidative stress on C. albicans, likely through the secretion of phenazines. However, the mitochondrial superoxide dismutase SOD2 was significantly down-regulated in the presence of P. aeruginosa. Monospecies biofilms of the sod2Δ mutant were more susceptible to amphotericin B, and the susceptibility of these biofilms was further enhanced by exogenous phenazines. CONCLUSIONS: We propose that in dual-species biofilms, P. aeruginosa simultaneously induces mitochondrial oxidative stress, while down-regulating key detoxification enzymes, which prevents C. albicans mounting an appropriate oxidative stress response to amphotericin B, leading to fungal cell death. This work highlights the importance of understanding the impact of polymicrobial interactions on antimicrobial susceptibility.


Assuntos
Anfotericina B , Candida albicans , Anfotericina B/farmacologia , Pseudomonas aeruginosa , Biofilmes , Antibacterianos/farmacologia , Fenazinas , Antifúngicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA