Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(5)2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37243263

RESUMO

miRNAs, small non-coding RNAs that regulate gene expression, are involved in various pathological processes, including viral infections. Virus infections may interfere with the miRNA pathway through the inhibition of genes involved in miRNA biogenesis. A reduction in the number and the levels of miRNAs expressed in nasopharyngeal swabs of patients with severe COVID-19 was lately observed by us, pointing towards the potential of miRNAs as possible diagnostic or prognostic biomarkers for predicting outcomes among patients with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. The objective of the present study was to investigate whether SARS-CoV-2 infection influences the expression levels of messenger RNAs (mRNAs) of key genes involved in miRNA biogenesis. mRNA levels of AGO2, DICER1, DGCR8, DROSHA, and Exportin-5 (XPO5) were measured by quantitative reverse-transcription polymerase chain reaction (RT-qPCR) in nasopharyngeal swab specimens from patients with COVID-19 and controls, as well as in cells infected with SARS-CoV-2 in vitro. Our data showed that the mRNA expression levels of AGO2, DICER1, DGCR8, DROSHA, and XPO5 were not significantly different in patients with severe COVID-19 when compared to patients with non-severe COVID-19 and controls. Similarly, the mRNA expression of these genes was not affected by SARS-CoV-2 infection in NHBE and Calu-3 cells. However, in Vero E6 cells, AGO2, DICER1, DGCR8, and XPO5 mRNA levels were slightly upregulated 24 h after infection with SARS-CoV-2. In conclusion, we did not find evidence for downregulation of mRNA levels of miRNA biogenesis genes during SARS-CoV-2 infection, neither ex vivo nor in vitro.


Assuntos
COVID-19 , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , COVID-19/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA Mensageiro/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Carioferinas/genética
3.
Clin Cancer Res ; 27(21): 6012-6025, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34400415

RESUMO

PURPOSE: AXL has been shown to play a pivotal role in the selective response of FLT3-ITD acute myeloid leukemia (AML) cells to FLT3 tyrosine kinase inhibitors (TKI), particularly within the bone marrow microenvironment. EXPERIMENTAL DESIGN: Herein, we compared the effect of dual FLT3/AXL-TKI gilteritinib with quizartinib through in vitro models mimicking hematopoietic niche conditions, ex vivo in primary AML blasts, and in vivo with dosing regimens allowing plasma concentration close to those used in clinical trials. RESULTS: We observed that gilteritinib maintained a stronger proapoptotic effect in hypoxia and coculture with bone marrow stromal cells compared with quizartinib, linked to a dose-dependent inhibition of AXL phosphorylation. In vivo, use of the MV4-11 cell line with hematopoietic engraftment demonstrated that gilteritinib was more effective than quizartinib at targeting leukemic cells in bone marrow. Finally, FLT3-ITD AML patient-derived xenografts revealed that this effect was particularly reproducible in FLT3-ITD AML with high allelic ratio in primary and secondary xenograft. Moreover, gilteritinib and quizartinib displayed close toxicity profile on normal murine hematopoiesis, particularly at steady state. CONCLUSIONS: Overall, these findings suggest that gilteritinib as a single agent, compared with quizartinib, is more likely to reach leukemic cells in their protective microenvironment, particularly AML clones highly dependent on FLT3-ITD signaling.


Assuntos
Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Benzotiazóis/farmacologia , Benzotiazóis/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/fisiologia , Linhagem Celular Tumoral , Hematopoese , Humanos , Receptor Tirosina Quinase Axl
4.
Sci Immunol ; 6(61)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330813

RESUMO

Human γδ T cells contribute to tissue homeostasis and participate in epithelial stress surveillance through mechanisms that are not well understood. Here, we identified ephrin type-A receptor 2 (EphA2) as a stress antigen recognized by a human Vγ9Vδ1 TCR. EphA2 is recognized coordinately by ephrin A to enable γδ TCR activation. We identified a putative TCR binding site on the ligand-binding domain of EphA2 that was distinct from the ephrin A binding site. Expression of EphA2 was up-regulated upon AMP-activated protein kinase (AMPK)-dependent metabolic reprogramming of cancer cells, and coexpression of EphA2 and active AMPK in tumors was associated with higher CD3 T cell infiltration in human colorectal cancer tissue. These results highlight the potential of the human γδ TCR to cooperate with a co-receptor to recognize non-MHC-encoded proteins as signals of cellular dysregulation, potentially allowing γδ T cells to sense metabolic energy changes associated with either viral infection or cancer.


Assuntos
Proteínas Quinases Ativadas por AMP/imunologia , Antígenos/imunologia , Linfócitos Intraepiteliais/imunologia , Neoplasias/imunologia , Receptor EphA2/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Anticorpos Monoclonais/imunologia , Linhagem Celular , Humanos , Camundongos Knockout , Receptores de Antígenos de Linfócitos T gama-delta/genética
5.
Mol Ther Oncolytics ; 16: 250-261, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32140563

RESUMO

Human cytomegalovirus (HCMV) components are often found in tumors, but the precise relationship between HCMV and cancer remains a matter of debate. Pro-tumor functions of HCMV were described in several studies, but an association between HCMV seropositivity and reduced cancer risk was also evidenced, presumably relying on recognition and killing of cancer cells by HCMV-induced lymphocytes. This study aimed at deciphering whether CMV influences cancer development in an immune-independent manner. Using immunodeficient mice, we showed that systemic infection with murine CMV (MCMV) inhibited the growth of murine carcinomas. Surprisingly, MCMV, but not HCMV, also reduced human colon carcinoma development in vivo. In vitro, both viruses infected human cancer cells. Expression of human interferon-ß (IFN-ß) and nuclear domain (ND10) were induced in MCMV-infected, but not in HCMV-infected human colon cancer cells. These results suggest a decreased capacity of MCMV to counteract intrinsic defenses in the human cellular host. Finally, immunodeficient mice receiving peri-tumoral MCMV therapy showed a reduction of human colon cancer cell growth, albeit no clinical sign of systemic virus dissemination was evidenced. Our study, which describes a selective advantage of MCMV over HCMV to control human colon cancer, could pave the way for the development of CMV-based therapies against cancer.

6.
J Heart Lung Transplant ; 35(12): 1418-1426, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27450460

RESUMO

BACKGROUND: The effect of donor-specific anti-human leukocyte antigen (HLA) antibodies (DSAs) on graft survival is recognized in lung transplantation, but not all serum DSAs appear to be harmful. We wondered whether in situ DSA detection from graft biopsy specimens could help in identifying lung transplant recipients (LTRs) at higher risk for graft loss. METHODS: Class I and II HLA antibody single-antigen flow bead assays were performed in 53 LTRs to identify immunoglobulin G DSA in biopsy specimen eluates and in sera and to evaluate C1q binding ability of DSA in sera. Intragraft DSAs (gDSAs) were correlated with serum DSAs (sDSAs), clinical and histologic data, and graft survival. RESULTS: Twenty-eight (52.8%) LTRs had sDSAs, 12 (22.6%) had C1q-positive sDSAs, and 11 (20.8%) had gDSAs. Fifty sDSAs were found, among which 15 (30%) were C1q-positive and 14 (28%) were found in biopsy specimen eluates. One DSA was detected in the biopsy specimen only. Serum mean fluorescence intensity and biopsy fragment size were higher for sDSAs detected in biopsy specimens (p = 0.003 and p = 0.02, respectively). One-year post-biopsy graft survival was lower for LTRs with gDSAs (p = 0.008 by log-rank test). Presence of gDSA at the time of biopsy constituted a risk factor for graft loss in univariate (odds ratio, 6.67; 95% confidence interval [CI] 1.51-29.47; p = 0.008; hazard risk, 3.44; 95% CI, 1.47-8.01, p = 0.005) and multivariate (odds ratio, 5.85; 95% CI, 1.23-27.68; p = 0.03; hazard risk, 4.51; 95% CI, 1.83-11.13; p = 0001) analyses using logistic regression and a Cox proportional hazard model, respectively. CONCLUSIONS: In lung transplantation, gDSA appears to be a valuable biomarker to identify pathogenic DSA and LTRs with a higher risk for graft loss.


Assuntos
Transplante de Pulmão , Anticorpos , Rejeição de Enxerto , Sobrevivência de Enxerto , Antígenos HLA , Humanos , Isoanticorpos , Transplante de Rim , Fatores de Risco , Doadores de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA