Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Evol Biol ; 36(10): 1503-1516, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37750610

RESUMO

The "paradox of the great speciators" has puzzled evolutionary biologists for over half a century. A great speciator requires excellent dispersal propensity to explain its occurrence on multiple islands, but reduced dispersal ability to explain its high number of subspecies. A rapid reduction in dispersal ability is often invoked to solve this apparent paradox, but a proximate mechanism has not been identified yet. Here, we explored the role of six genes linked to migration and animal personality differences (CREB1, CLOCK, ADCYAP1, NPAS2, DRD4, and SERT) in 20 South Pacific populations of silvereye (Zosterops lateralis) that range from highly sedentary to partially migratory, to determine if genetic variation is associated with dispersal propensity and migration. We detected genetic associations in three of the six genes: (i) in a partial migrant population, migrant individuals had longer microsatellite alleles at the CLOCK gene compared to resident individuals from the same population; (ii) CREB1 displayed longer average microsatellite allele lengths in recently colonized island populations (<200 years), compared to evolutionarily older populations. Bayesian broken stick regression models supported a reduction in CREB1 length with time since colonization; and (iii) like CREB1, DRD4 showed differences in polymorphisms between recent and old colonizations but a larger sample is needed to confirm. ADCYAP1, SERT, and NPAS2 were variable but that variation was not associated with dispersal propensity. The association of genetic variants at three genes with migration and dispersal ability in silvereyes provides the impetus for further exploration of genetic mechanisms underlying dispersal shifts, and the prospect of resolving a long-running evolutionary paradox through a genetic lens.


Assuntos
Migração Animal , Passeriformes , Animais , Humanos , Teorema de Bayes , Polimorfismo Genético , Passeriformes/genética , Evolução Biológica
2.
Arch Environ Contam Toxicol ; 85(1): 55-72, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438517

RESUMO

The oceans become increasingly contaminated as a result of global industrial production and consumer behaviour, and this affects wildlife in areas far removed from sources of pollution. Migratory seabirds such as storm-petrels may forage in areas with different contaminant levels throughout the annual cycle and may show a carry-over of mercury from the winter quarters to the breeding sites. In this study, we compared mercury levels among seven species of storm-petrels breeding on the Antarctic South Shetlands and subantarctic Kerguelen Islands, in temperate waters of the Chatham Islands, New Zealand, and in temperate waters of the Pacific off Mexico. We tested for differences in the level of contamination associated with breeding and inter-breeding distribution and trophic position. We collected inert body feathers and metabolically active blood samples in ten colonies, reflecting long-term (feathers) and short-term (blood) exposures during different periods ranging from early non-breeding (moult) to late breeding. Feathers represent mercury accumulated over the annual cycle between two successive moults. Mercury concentrations in feathers ranged over more than an order of magnitude among species, being lowest in subantarctic Grey-backed Storm-petrels (0.5 µg g-1 dw) and highest in subtropical Leach's Storm-petrels (7.6 µg g-1 dw, i.e. posing a moderate toxicological risk). Among Antarctic Storm-petrels, Black-bellied Storm-petrels had threefold higher values than Wilson's Storm-petrels, and in both species, birds from the South Shetlands (Antarctica) had threefold higher values than birds from Kerguelen (subantarctic Indian Ocean). Blood represents mercury taken up over several weeks, and showed similar trends, being lowest in Grey-backed Storm-petrels from Kerguelen (0.5 µg g-1 dw) and highest in Leach's Storm-petrels (3.6 µg g-1 dw). Among Antarctic storm-petrels, species differences in the blood samples were similar to those in feathers, but site differences were less consistent. Over the breeding season, mercury decreased in blood samples of Antarctic Wilson's Storm-petrels, but did not change in Wilson's Storm-petrels from Kerguelen or in Antarctic Black-bellied Storm-petrels. In summary, we found that mercury concentrations in storm-petrels varied due to the distribution of species and differences in prey choice. Depending on prey choices, Antarctic storm-petrels can have similar mercury concentrations as temperate species. The lowest contamination was observed in subantarctic species and populations. The study shows how seabirds, which accumulate dietary pollutants in their tissues in the breeding and non-breeding seasons, can be used to survey marine pollution. Storm-petrels with their wide distributions and relatively low trophic levels may be especially useful, but more detailed knowledge on their prey choice and distributions is needed.


Assuntos
Mercúrio , Animais , Mercúrio/análise , Regiões Antárticas , Monitoramento Ambiental , Aves , Oceano Índico , Plumas/química
3.
BMC Genomics ; 23(1): 747, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357860

RESUMO

BACKGROUND: Understanding the micro--evolutionary response of populations to demographic declines is a major goal in evolutionary and conservation biology. In small populations, genetic drift can lead to an accumulation of deleterious mutations, which will increase the risk of extinction. However, demographic recovery can still occur after extreme declines, suggesting that natural selection may purge deleterious mutations, even in extremely small populations. The Chatham Island black robin (Petroica traversi) is arguably the most inbred bird species in the world. It avoided imminent extinction in the early 1980s and after a remarkable recovery from a single pair, a second population was established and the two extant populations have evolved in complete isolation since then. Here, we analysed 52 modern and historical genomes to examine the genomic consequences of this extreme bottleneck and the subsequent translocation. RESULTS: We found evidence for two-fold decline in heterozygosity and three- to four-fold increase in inbreeding in modern genomes. Moreover, there was partial support for temporal reduction in total load for detrimental variation. In contrast, compared to historical genomes, modern genomes showed a significantly higher realised load, reflecting the temporal increase in inbreeding. Furthermore, the translocation induced only small changes in the frequency of deleterious alleles, with the majority of detrimental variation being shared between the two populations. CONCLUSION: Our results highlight the dynamics of mutational load in a species that recovered from the brink of extinction, and show rather limited temporal changes in mutational load. We hypothesise that ancestral purging may have been facilitated by population fragmentation and isolation on several islands for thousands of generations and may have already reduced much of the highly deleterious load well before human arrival and introduction of pests to the archipelago. The majority of fixed deleterious variation was shared between the modern populations, but translocation of individuals with low mutational load could possibly mitigate further fixation of high-frequency deleterious variation.


Assuntos
Deriva Genética , Endogamia , Humanos , Seleção Genética , Alelos , Genômica , Variação Genética
4.
Mol Genet Genomics ; 297(1): 183-198, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34921614

RESUMO

Interspecific introgression can occur between species that evolve rapidly within an adaptive radiation. Pachyptila petrels differ in bill size and are characterised by incomplete reproductive isolation, leading to interspecific gene flow. Salvin's prion (Pachyptila salvini), whose bill width is intermediate between broad-billed (P. vittata) and Antarctic (P. desolata) prions, evolved through homoploid hybrid speciation. MacGillivray's prion (P. macgillivrayi), known from a single population on St Paul (Indian Ocean), has a bill width intermediate between salvini and vittata and could also be the product of interspecies introgression or hybrid speciation. Recently, another prion population phenotypically similar to macgillivrayi was discovered on Gough (Atlantic Ocean), where it breeds 3 months later than vittata. The similarity in bill width between the medium-billed birds on Gough and macgillivrayi suggest that they could be closely related. In this study, we used genetic and morphological data to infer the phylogenetic position and evolutionary history of P. macgillivrayi and the Gough medium-billed prion relative other Pachyptila taxa, to determine whether species with medium bill widths evolved through common ancestry or convergence. We found that Gough medium-billed prions belong to the same evolutionary lineage as macgillivrayi, representing a new population of MacGillivray's prion that originated through a colonisation event from St Paul. We show that macgillivrayi's medium bill width evolved through divergence (genetic drift) and independently from that of salvini, which evolved through hybridisation (gene flow). This represents the independent convergence towards a similarly medium-billed phenotype. The newly discovered MacGillivray's prion population on Gough is of utmost conservation relevance, as the relict macgillivrayi population in the Indian Ocean is very small.


Assuntos
Bico/anatomia & histologia , Aves , Evolução Molecular , Animais , Regiões Antárticas , Oceano Atlântico , Aves/anatomia & histologia , Aves/classificação , Aves/genética , Fluxo Gênico , Variação Genética , Hibridização Genética , Oceano Índico , Ilhas do Oceano Índico , Fenótipo , Filogenia
5.
Front Vet Sci ; 8: 698685, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34386538

RESUMO

Wild penguins are facing increased threats to their populations and their welfare as a consequence of human activities. Understanding the perception of animal welfare is essential to identify ethical concerns related to the negative impact of anthropogenic factors on wild species and to guide conservation efforts that reflect societal values. Since penguin conservation is of general interest, we examined the human dimension of welfare assessment across a range of interest groups concerned with penguins, seabird biology and wildlife conservation. We provided participants with a Penguin Welfare Assessment Tool (PWAT) based on the five domains model. The PWAT supports consideration of the impact of four physical aspects on welfare-relevant mental states. Bibliometric analysis of keywords from 347 scientific articles indicated that penguins around the world face five main types (themes) of anthropogenic factors and we then developed five hypothetical scenarios, each related to one theme. Seventy-five participants scored the overall impact of the events described in the scenarios on penguin welfare as negative using the PWAT. Participants rated short-duration, high-intensity events (i.e., being trapped in a ghost fishing net) as having a significantly more severe impact on penguin welfare than low-intensity, long-duration events (P < 0.0001). Scores provided by participants for each domain for each scenario were largely as expected and we found good correlation (all P < 0.0001) between the physical domains and "mental state" for all scenarios, indicating that the tool was facilitating the participants' assessment of welfare. No evidence was found that experience of working or studying penguins, or indeed any other demographic factor investigated, influenced the assessments of welfare. We found little agreement between participants in the scores provided (unalike scores mostly between 0.7 and 0.8), and agreement between participants with experience of working with penguins was no better than between participants without such experience. We discuss the possibility that low agreement within different interest groups may be improved by providing more scientific information to support the evaluation of penguin welfare. We conclude that scientific knowledge of penguin biological responses to anthropogenic factors is vital to support the evaluation of wild penguin welfare by the public and other stakeholders.

6.
Environ Toxicol Chem ; 40(2): 454-472, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33201544

RESUMO

Mercury (Hg) is a toxic metal that accumulates in organisms and biomagnifies along food webs; hence, long-lived predators such as seabirds are at risk as a result of high Hg bioaccumulation. Seabirds have been widely used to monitor the contamination of marine ecosystems. In the present study, we investigated Hg concentrations in blood, muscle, and feathers of 7 procellariform seabirds breeding on the Chatham Islands, New Zealand. Using bulk and compound-specific stable isotope ratios of carbon and nitrogen as a proxy of trophic position and distribution, we also tested whether Hg contamination is related to the species-specific feeding ecology. Mercury exposure varied widely within the seabird community. The highest contaminated species, the Magenta petrel, had approximately 29 times more Hg in its blood than the broad-billed prion, and approximately 35 times more Hg in its feathers than the grey-backed storm petrel. Variations of Hg concentrations in blood and feathers were significantly and positively linked to feeding habitats and trophic position, highlighting the occurrence of efficient Hg biomagnification processes along the food web. Species and feeding habitats were the 2 main drivers of Hg exposure within the seabird community. The Pterodroma species had high blood and feather Hg concentrations, which can be caused by their specific physiology and/or because of their foraging behavior during the interbreeding period (i.e., from the Tasman Sea to the Humboldt Current system). These 2 threatened species are at risk of suffering detrimental effects from Hg contamination and further studies are required to investigate potential negative impacts, especially on their reproduction capability. Environ Toxicol Chem 2021;40:454-472. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Mercúrio , Animais , Aves , Ecossistema , Monitoramento Ambiental , Plumas/química , Cadeia Alimentar , Ilhas , Mercúrio/análise , Nova Zelândia
7.
Viruses ; 11(12)2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766719

RESUMO

Understanding the causes of disease in Antarctic wildlife is crucial, as many of these species are already threatened by environmental changes brought about by climate change. In recent years, Antarctic penguins have been showing signs of an unknown pathology: a feather disorder characterised by missing feathers, resulting in exposed skin. During the 2018-2019 austral summer breeding season at Cape Crozier colony on Ross Island, Antarctica, we observed for the first time an Adélie penguin chick missing down over most of its body. A guano sample was collected from the nest of the featherless chick, and using high-throughput sequencing, we identified a novel circovirus. Using abutting primers, we amplified the full genome, which we cloned and Sanger-sequenced to determine the complete genome of the circovirus. The Adélie penguin guano-associated circovirus genome shares <67% genome-wide nucleotide identity with other circoviruses, representing a new species of circovirus; therefore, we named it penguin circovirus (PenCV). Using the same primer pair, we screened 25 previously collected cloacal swabs taken at Cape Crozier from known-age adult Adélie penguins during the 2014-2015 season, displaying no clinical signs of feather-loss disorder. Three of the 25 samples (12%) were positive for a PenCV, whose genome shared >99% pairwise identity with the one identified in 2018-2019. This is the first report of a circovirus associated with a penguin species. This circovirus could be an etiological agent of the feather-loss disorder in Antarctic penguins.


Assuntos
Doenças das Aves/virologia , Infecções por Circoviridae/veterinária , Circovirus/classificação , Plumas/virologia , Genoma Viral/genética , Spheniscidae/virologia , Animais , Regiões Antárticas , Cruzamento , Infecções por Circoviridae/virologia , Circovirus/genética , Circovirus/isolamento & purificação , Mudança Climática , Feminino , Ilhas , Masculino , Filogenia , Estações do Ano
8.
Theor Popul Biol ; 128: 39-50, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31059720

RESUMO

We consider a class of continuous-time branching processes called Markovian binary trees (MBTs), in which the individuals lifetime and reproduction epochs are modelled using a transient Markovian arrival process (TMAP). We develop methods for estimating the parameters of the TMAP by using either age-specific averages of reproduction and mortality rates, or age-specific individual demographic data. Depending on the degree of detail of the available information, we follow a weighted non-linear regression or a maximum likelihood approach. We discuss several criteria to determine the optimal number of states in the underlying TMAP. Our results improve the fit of an existing MBT model for human demography, and provide insights for the future conservation management of the threatened Chatham Island black robin population.


Assuntos
Demografia , Funções Verossimilhança , Cadeias de Markov , Animais , Aves , Espécies em Perigo de Extinção , Feminino , Masculino , Mortalidade , Dinâmica Populacional , Reprodução
9.
Mol Biol Evol ; 36(8): 1671-1685, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31028398

RESUMO

Speciation through homoploid hybridization (HHS) is considered extremely rare in animals. This is mainly because the establishment of reproductive isolation as a product of hybridization is uncommon. Additionally, many traits are underpinned by polygeny and/or incomplete dominance, where the hybrid phenotype is an additive blend of parental characteristics. Phenotypically intermediate hybrids are usually at a fitness disadvantage compared with parental species and tend to vanish through backcrossing with parental population(s). It is therefore unknown whether the additive nature of hybrid traits in itself could lead successfully to HHS. Using a multi-marker genetic data set and a meta-analysis of diet and morphology, we investigated a potential case of HHS in the prions (Pachyptila spp.), seabirds distinguished by their bills, prey choice, and timing of breeding. Using approximate Bayesian computation, we show that the medium-billed Salvin's prion (Pachyptila salvini) could be a hybrid between the narrow-billed Antarctic prion (Pachyptila desolata) and broad-billed prion (Pachyptila vittata). Remarkably, P. salvini's intermediate bill width has given it a feeding advantage with respect to the other Pachyptila species, allowing it to consume a broader range of prey, potentially increasing its fitness. Available metadata showed that P. salvini is also intermediate in breeding phenology and, with no overlap in breeding times, it is effectively reproductively isolated from either parental species through allochrony. These results provide evidence for a case of HHS in nature, and show for the first time that additivity of divergent parental traits alone can lead directly to increased hybrid fitness and reproductive isolation.


Assuntos
Bico/anatomia & histologia , Aves/genética , Especiação Genética , Hibridização Genética , Isolamento Reprodutivo , Animais , Aves/anatomia & histologia , Dieta , Comportamento Alimentar
10.
Sci Rep ; 9(1): 3375, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833598

RESUMO

Age variation in reproductive performance is well-documented but the mechanisms underlying this variation remain unclear. Foraging efficiency is likely to be a key source of demographic variation as it determines the amount of energy that can be invested in fitness-related activities. Evidence of age-related changes in the foraging efficiency of adult seabirds is scarce and inconsistent. We investigated the effects of age on the foraging efficiency of breeding Adélie penguins, a relatively short-lived seabird species, in order to gain a broader perspective on the processes driving variation in ageing rates. We found support for a positive effect of age, either linear or levelling off at old ages, on both our proxies for daily catch rate and catch per unit effort. Across all age classes, males were more performant foragers than females. We found no strong evidence for differing ageing patterns between sexes or individual quality levels, and no evidence for senescence. We infer that continuous individual improvement could be responsible for a larger amount of the variation in foraging efficiency with age at our study site, compared with selective disappearance of underperforming phenotypes. The different results reported by other studies highlight the need to conduct longitudinal studies across a range of species in different environments.


Assuntos
Comportamento Predatório , Spheniscidae/fisiologia , Fatores Etários , Envelhecimento , Animais , Feminino , Masculino , Fatores Sexuais
11.
BMC Genomics ; 19(1): 53, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29338715

RESUMO

BACKGROUND: Mitochondria play a key role in the balance of energy and heat production, and therefore the mitochondrial genome is under natural selection by environmental temperature and food availability, since starvation can generate more efficient coupling of energy production. However, selection over mitochondrial DNA (mtDNA) genes has usually been evaluated at the population level. We sequenced by NGS 12 mitogenomes and with four published genomes, assessed genetic variation in ten penguin species distributed from the equator to Antarctica. Signatures of selection of 13 mitochondrial protein-coding genes were evaluated by comparing among species within and among genera (Spheniscus, Pygoscelis, Eudyptula, Eudyptes and Aptenodytes). The genetic data were correlated with environmental data obtained through remote sensing (sea surface temperature [SST], chlorophyll levels [Chl] and a combination of SST and Chl [COM]) through the distribution of these species. RESULTS: We identified the complete mtDNA genomes of several penguin species, including ND6 and 8 tRNAs on the light strand and 12 protein coding genes, 14 tRNAs and two rRNAs positioned on the heavy strand. The highest diversity was found in NADH dehydrogenase genes and the lowest in COX genes. The lowest evolutionary divergence among species was between Humboldt (Spheniscus humboldti) and Galapagos (S. mendiculus) penguins (0.004), while the highest was observed between little penguin (Eudyptula minor) and Adélie penguin (Pygoscelis adeliae) (0.097). We identified a signature of purifying selection (Ka/Ks < 1) across the mitochondrial genome, which is consistent with the hypothesis that purifying selection is constraining mitogenome evolution to maintain Oxidative phosphorylation (OXPHOS) proteins and functionality. Pairwise species maximum-likelihood analyses of selection at codon sites suggest positive selection has occurred on ATP8 (Fixed-Effects Likelihood, FEL) and ND4 (Single Likelihood Ancestral Counting, SLAC) in all penguins. In contrast, COX1 had a signature of strong negative selection. ND4 Ka/Ks ratios were highly correlated with SST (Mantel, p-value: 0.0001; GLM, p-value: 0.00001) and thus may be related to climate adaptation throughout penguin speciation. CONCLUSIONS: These results identify mtDNA candidate genes under selection which could be involved in broad-scale adaptations of penguins to their environment. Such knowledge may be particularly useful for developing predictive models of how these species may respond to severe climatic changes in the future.


Assuntos
Evolução Molecular , Genoma Mitocondrial , Seleção Genética , Spheniscidae/genética , Animais , DNA Mitocondrial/química , Interação Gene-Ambiente , Genômica
12.
J Math Biol ; 75(6-7): 1319-1347, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28374100

RESUMO

In this paper, we use a finite-state continuous-time Markov chain with one absorbing state to model an individual's lifetime. Under this model, the time of death follows a phase-type distribution, and the transient states of the Markov chain are known as phases. We then attempt to provide an answer to the simple question "What is the conditional age distribution of the individual, given its current phase"? We show that the answer depends on how we interpret the question, and in particular, on the phase observation scheme under consideration. We then apply our results to the computation of the age pyramid for the endangered Chatham Island black robin Petroica traversi during the monitoring period 2007-2014.


Assuntos
Aves Canoras , Distribuição por Idade , Animais , Bioestatística , Cadeias de Markov , Conceitos Matemáticos , Modelos Biológicos , Nova Zelândia , Distribuição de Poisson , Aves Canoras/crescimento & desenvolvimento , Processos Estocásticos
13.
Mol Ecol Resour ; 15(5): 1046-58, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25594938

RESUMO

Microsatellite loci are ideal for testing hypotheses relating to genetic segregation at fine spatio-temporal scales. They are also conserved among closely related species, making them potentially useful for clarifying interspecific relationships between recently diverged taxa. However, mutations at primer binding sites may lead to increased nonamplification, or disruptions that may result in decreased polymorphism in nontarget species. Furthermore, high mutation rates and constraints on allele size may also with evolutionary time, promote an increase in convergently evolved allele size classes, biasing measures of interspecific genetic differentiation. Here, we used next-generation sequencing to develop microsatellite markers from a shotgun genome sequence of the sub-Antarctic seabird, the thin-billed prion (Pachyptila belcheri), that we tested for cross-species amplification in other Pachyptila and related sub-Antarctic species. We found that heterozygosity decreased and the proportion of nonamplifying loci increased with phylogenetic distance from the target species. Surprisingly, we found that species trees estimated from interspecific FST provided better approximations of mtDNA relationships among the studied species than those estimated using DC , even though FST was more affected by null alleles. We observed a significantly nonlinear second order polynomial relationship between microsatellite and mtDNA distances. We propose that the loss of linearity with increasing mtDNA distance stems from an increasing proportion of homoplastic allele size classes that are identical in state, but not identical by descent. Therefore, despite high cross-species amplification success and high polymorphism among the closely related Pachyptila species, we caution against the use of microsatellites in phylogenetic inference among distantly related taxa.


Assuntos
Aves/classificação , Aves/genética , Variação Genética , Repetições de Microssatélites , Filogenia , Animais , DNA Mitocondrial/química , DNA Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala
14.
J Gen Virol ; 96(Pt 4): 851-857, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25537375

RESUMO

Little is known about viruses associated with Antarctic animals, although they are probably widespread. We recovered a novel polyomavirus from Adélie penguin (Pygoscelis adeliae) faecal matter sampled in a subcolony at Cape Royds, Ross Island, Antarctica. The 4988 nt Adélie penguin polyomavirus (AdPyV) has a typical polyomavirus genome organization with three ORFs that encoded capsid proteins on the one strand and two non-structural protein-coding ORFs on the complementary strand. The genome of AdPyV shared ~60 % pairwise identity with all avipolyomaviruses. Maximum-likelihood phylogenetic analysis of the large T-antigen (T-Ag) amino acid sequences showed that the T-Ag of AdPyV clustered with those of avipolyomaviruses, sharing between 48 and 52 % identities. Only three viruses associated with Adélie penguins have been identified at a genomic level, avian influenza virus subtype H11N2 from the Antarctic Peninsula and, respectively, Pygoscelis adeliae papillomavirus and AdPyV from capes Crozier and Royds on Ross Island.


Assuntos
Polyomavirus/isolamento & purificação , Spheniscidae/virologia , Sequência de Aminoácidos , Animais , Regiões Antárticas , Antígenos Virais de Tumores/genética , Genoma Viral , Vírus da Influenza A/genética , Influenza Aviária/virologia , Dados de Sequência Molecular , Papillomaviridae/classificação , Papillomaviridae/genética , Papillomaviridae/isolamento & purificação , Filogenia , Polyomavirus/classificação , Polyomavirus/genética
15.
J Gen Virol ; 95(Pt 6): 1352-1365, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24686913

RESUMO

Papillomaviruses are epitheliotropic viruses that have circular dsDNA genomes encapsidated in non-enveloped virions. They have been found to infect a variety of mammals, reptiles and birds, but so far they have not been found in amphibians. Using a next-generation sequencing de novo assembly contig-informed recovery, we cloned and Sanger sequenced the complete genome of a novel papillomavirus from the faecal matter of Adélie penguins (Pygoscelis adeliae) nesting on Ross Island, Antarctica. The genome had all the usual features of a papillomavirus and an E9 ORF encoding a protein of unknown function that is found in all avian papillomaviruses to date. This novel papillomavirus genome shared ~60 % pairwise identity with the genomes of the other three known avian papillomaviruses: Fringilla coelebs papillomavirus 1 (FcPV1), Francolinus leucoscepus papillomavirus 1 (FlPV1) and Psittacus erithacus papillomavirus 1. Pairwise identity analysis and phylogenetic analysis of the major capsid protein gene clearly indicated that it represents a novel species, which we named Pygoscelis adeliae papillomavirus 1 (PaCV1). No evidence of recombination was detected in the genome of PaCV1, but we did detect a recombinant region (119 nt) in the E6 gene of FlPV1 with the recombinant region being derived from ancestral FcPV1-like sequences. Previously only paramyxoviruses, orthomyxoviruses and avian pox viruses have been genetically identified in penguins; however, the majority of penguin viral identifications have been based on serology or histology. This is the first report, to our knowledge, of a papillomavirus associated with a penguin species.


Assuntos
Papillomaviridae/genética , Papillomaviridae/isolamento & purificação , Spheniscidae/virologia , Sequência de Aminoácidos , Animais , Regiões Antárticas , Sequência Conservada , Fezes/virologia , Genoma Viral , Especificidade de Hospedeiro , Dados de Sequência Molecular , Proteínas Oncogênicas Virais/genética , Papillomaviridae/classificação , Proteínas E7 de Papillomavirus/genética , Filogenia , Homologia de Sequência de Aminoácidos , Virologia/métodos
16.
PLoS One ; 8(12): e79066, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24348992

RESUMO

Conservation management often focuses on counteracting the adverse effects of human activities on threatened populations. However, conservation measures may unintentionally relax selection by allowing the 'survival of the not-so-fit', increasing the risk of fixation of maladaptive traits. Here, we report such a case in the critically-endangered Chatham Island black robin (Petroica traversi) which, in 1980, was reduced to a single breeding pair. Following this bottleneck, some females were observed to lay eggs on the rims of their nests. Rim eggs left in place always failed to hatch. To expedite population recovery, rim eggs were repositioned inside nests, yielding viable hatchlings. Repositioning resulted in rapid growth of the black robin population, but by 1989 over 50% of all females were laying rim eggs. We used an exceptional, species-wide pedigree to consider both recessive and dominant models of inheritance over all plausible founder genotype combinations at a biallelic and possibly sex-linked locus. The pattern of rim laying is best fitted as an autosomal dominant Mendelian trait. Using a phenotype permutation test we could also reject the null hypothesis of non-heritability for this trait in favour of our best-fitting model of heritability. Data collected after intervention ceased shows that the frequency of rim laying has strongly declined, and that this trait is maladaptive. This episode yields an important lesson for conservation biology: fixation of maladaptive traits could render small threatened populations completely dependent on humans for reproduction, irreversibly compromising the long term viability of populations humanity seeks to conserve.


Assuntos
Aves/fisiologia , Animais , Aves/genética , Espécies em Perigo de Extinção , Feminino , Humanos , Endogamia , Masculino , Fenótipo , Seleção Genética/genética , Aves Canoras/genética , Aves Canoras/fisiologia
17.
Virus Res ; 177(2): 209-16, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23994297

RESUMO

A wide variety of novel single-stranded DNA (ssDNA) viruses have been found in faecal matter of chimpanzees, cows, rodents, bats, badgers, foxes and pigs over the last few years. Using a combination of rolling circle amplification coupled with restriction enzyme digests based approach as well as a next generation sequencing informed approach, we have recovered fourteen full genomes of ssDNA viruses which exhibit genomic features described for members of the recently proposed gemycircularvirus group from a wide variety of mammal and bird faecal samples across New Zealand. The fourteen novel ssDNA viruses (2122-2290nt) encode two major proteins, a replication associated protein (Rep) and a capsid protein (Cp) which are bi-directionally transcribed. Interestingly, the Rep of these novel viruses are similar to gemycircularviruses detected in insects, cassava leaves, and badger faecal matter, the novel viruses share sequence similarities with the mycovirus sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1) and Rep-like sequences found in fungal genomes. Pairwise sequence similarities between the 14 novel genomes with other related viral isolates (gemycircularviruses) indicated that they share greater than 55.8% genome-wide identity. Additionally, they share between 55% and 59% pairwise identity with putative novel ssDNA virus genomes recently isolated from sewage baminivirus, niminivirus and nephavirus. Based on the similarities to SsHADV-1 and Rep-like sequences found in fungal genomes, these novel gemycircularviruses may infect fungi.


Assuntos
Aves/virologia , Vírus de DNA/isolamento & purificação , Fezes/virologia , Mamíferos/virologia , Proteínas Virais/genética , Animais , Vírus de DNA/classificação , Vírus de DNA/genética , Genoma Viral , Dados de Sequência Molecular , Filogenia
18.
Arch Virol ; 157(9): 1651-63, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22638639

RESUMO

Beak and feather disease virus (BFDV) infections are often fatal to both captive and wild parrot populations. Its recent discovery in a wild population of native red-fronted parakeets has raised concerns for the conservation of native parrots, all of which are threatened or endangered. The question of a recent introduction versus a native genotype of the virus poses different conservation-management challenges, and thus, a clear understanding of the molecular phylogeny of BDFV is a crucial step towards integrated management planning. This study represents the first comprehensive attempt to screen New Zealand's endangered and threatened psittacines systematically for BFDV. We sampled and screened kakapos (Strigops habroptilus), kakas (Nestor meridionalis), keas (N. notabilis), Chatham parakeets (Cyanoramphus forbesi), Malherbe's parakeets (Cyanoramphus malherbi), yellow-crowned parakeets (C. auriceps) and red-fronted parakeets (Cyanoramphus novaezelandiae), as well as eastern rosellas (Platycercus eximius), an introduced species that is now common throughout the North Island, for BFDV. Out of all species and populations sampled (786 individuals), we found 16 BFDV-positive red-fronted parakeets from Little Barrier Island/Hauturu, seven eastern rosellas from the Auckland region, and eight yellow-crowned parakeets from the Eglinton Valley in the South Island. The full genomes of the viral isolates from the red-fronted parakeets share 95-97 % sequence identity to those from the invasive eastern rosellas and 92.7-93.4 % to those isolates from the South Island yellow-crowned parakeets. The yellow-crowned parakeet BFDV isolates share 92-94 % sequence identity with those from eastern rosellas. The low level of diversity among all BFDV isolates from red-fronted parakeets could suggest a more recent infection among these birds compared to the yellow-crowned parakeets, whereas the diversity in the eastern rosellas indicates a much more established infection. Pro-active screening and monitoring of BFDV infection rates in aviaries as well as in wild populations are necessary to limit the risk of transmission among threatened and endangered parrot populations in New Zealand.


Assuntos
Doenças das Aves/epidemiologia , Doenças das Aves/virologia , Infecções por Circoviridae/veterinária , Circovirus/classificação , Circovirus/genética , Animais , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/virologia , Circovirus/isolamento & purificação , Análise por Conglomerados , DNA Viral/química , DNA Viral/genética , Variação Genética , Genoma Viral , Dados de Sequência Molecular , Nova Zelândia/epidemiologia , Papagaios , Filogenia , Análise de Sequência de DNA
20.
Arch Virol ; 155(4): 613-20, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20180139

RESUMO

Psittacine beak and feather disease (PBFD) is a viral disease distributed worldwide with a potentially critical impact on many rare parrots. While efforts have been made to determine its prevalence in wild and captive psittacines, only limited work has been done to document complete genomes of its causative agent, beak and feather disease virus (BFDV). Here, we describe five full genomes of BFDV isolated from wild specimens of an endemic New Zealand parrot, the red-fronted parakeet (Cyanoramphus novaezelandiae). The isolates share >99% nucleotide similarity amongst themselves and approximately 91-92% similarity to BFDV isolates from southern Africa, Europe and Australia. A maximum-likelihood (ML) phylogenetic tree including 42 other full-genome sequences indicated that the five isolates from red-fronted parakeets represent an undescribed genotype of BFDV. These isolates are evolutionarily most closely related to the Cacatuini isolates from Thailand and the Lorinae isolates from Australia in the rep gene ML tree; however, in the cp ML tree, the evolutionary relationship is closer to viruses found in the Psittacini.


Assuntos
Doenças das Aves/virologia , Infecções por Circoviridae/veterinária , Circovirus/classificação , Circovirus/isolamento & purificação , Papagaios/virologia , Animais , Infecções por Circoviridae/virologia , Análise por Conglomerados , DNA Viral/química , DNA Viral/genética , Genoma Viral , Dados de Sequência Molecular , Nova Zelândia , Filogenia , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA