Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 15: 1380552, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846959

RESUMO

This case report chronicles the diagnostic odyssey and resolution of a 27-year-old female with a complex neurodevelopmental disorder (NDD) using Whole Exome Sequencing (WES). The patient presented to a precision medicine clinic with multiple diagnoses including intellectual disability, autism spectrum disorder (ASD), obsessive-compulsive disorder (OCD), tics, seizures, and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS). Although this patient previously had chromosomal microarray and several single-gene tests, the underlying cause of this patient's symptoms remained elusive. WES revealed a pathogenic missense mutation in the HNRNPU gene, associated with HNRNPU-related neurodevelopmental disorder (HNRNPU-NDD) and developmental and epileptic encephalopathy-54 (DEE54, OMIM: # 617391). Following this diagnoses, other treating clinicians identified additional indications for genetic testing, however, as the WES data was readily available, the clinical team was able to re-analyze the WES data to address their inquiries without requiring additional tests. This emphasizes the pivotal role of WES in expediting diagnoses, reducing costs, and providing ongoing clinical utility throughout a patient's life. Accessible WES data in primary care settings can enhance patient care by informing future genetic inquiries, enhancing coordination of care, and facilitating precision medicine interventions, thereby mitigating the burden on families and the healthcare system.

3.
J Pers Med ; 11(12)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34945768

RESUMO

With increasing patient interest in and access to pharmacogenomic testing, clinicians practicing in primary care are more likely than ever to encounter a patient seeking or presenting with pharmacogenomic test results. Gene-based prescribing recommendations are available to healthcare providers through Food and Drug Administration-approved drug labeling and Clinical Pharmacogenetics Implementation Consortium guidelines. Given the lifelong utility of pharmacogenomic test results to optimize pharmacotherapy for commonly prescribed medications, appropriate documentation of these results in a patient's electronic health record (EHR) is essential. The current "gold standard" for pharmacogenomics implementation includes entering pharmacogenomic test results into EHRs as discrete results with associated clinical decision support (CDS) alerts that will fire at the point of prescribing, similar to drug allergy alerts. However, such infrastructure is limited to the few institutions that have invested in the resources and personnel to develop and maintain it. For the majority of clinicians who do not practice at an institution with a dedicated clinical pharmacogenomics team and integrated pharmacogenomics CDS in the EHR, this report provides practical tips for documenting pharmacogenomic test results in the problem list and allergy field to maximize the visibility and utility of results over time, especially when such results could prevent the occurrence of serious adverse drug reactions or predict therapeutic failure.

5.
PLoS One ; 10(5): e0127045, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25996915

RESUMO

Mutations in ATP1A3 cause Alternating Hemiplegia of Childhood (AHC) by disrupting function of the neuronal Na+/K+ ATPase. Published studies to date indicate 2 recurrent mutations, D801N and E815K, and a more severe phenotype in the E815K cohort. We performed mutation analysis and retrospective genotype-phenotype correlations in all eligible patients with AHC enrolled in the US AHC Foundation registry from 1997-2012. Clinical data were abstracted from standardized caregivers' questionnaires and medical records and confirmed by expert clinicians. We identified ATP1A3 mutations by Sanger and whole genome sequencing, and compared phenotypes within and between 4 groups of subjects, those with D801N, E815K, other ATP1A3 or no ATP1A3 mutations. We identified heterozygous ATP1A3 mutations in 154 of 187 (82%) AHC patients. Of 34 unique mutations, 31 (91%) are missense, and 16 (47%) had not been previously reported. Concordant with prior studies, more than 2/3 of all mutations are clusteredin exons 17 and 18. Of 143 simplex occurrences, 58 had D801N (40%), 38 had E815K(26%) and 11 had G947R (8%) mutations [corrected].Patients with an E815K mutation demonstrate an earlier age of onset, more severe motor impairment and a higher prevalence of status epilepticus. This study further expands the number and spectrum of ATP1A3 mutations associated with AHC and confirms a more deleterious effect of the E815K mutation on selected neurologic outcomes. However, the complexity of the disorder and the extensive phenotypic variability among subgroups merits caution and emphasizes the need for further studies.


Assuntos
Hemiplegia/genética , ATPase Trocadora de Sódio-Potássio/genética , Criança , Pré-Escolar , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Hemiplegia/fisiopatologia , Humanos , Lactente , Masculino , Sistema de Registros
6.
Ann Neurol ; 55(6): 884-7, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15174025

RESUMO

Alternating hemiplegia of childhood (AHC) is typically distinguished from familial hemiplegic migraine (FHM) by infantile onset of the characteristic symptoms and high prevalence of associated neurological deficits that become increasingly obvious with age. Expansion of the clinical spectrum in FHM recently has begun to blur the distinction between these disorders. We report a novel ATP1A2 mutation in a kindred with features that bridge the phenotypic spectrum between AHC and FHM syndromes, supporting a possible common pathogenesis in a subset of such cases. Mutation analysis in classic sporadic AHC patients and in an additional five kindreds in which linkage to the ATP1A2 locus could not be excluded failed to identify additional mutations.


Assuntos
Saúde da Família , Hemiplegia/genética , Enxaqueca com Aura/genética , Mutação , ATPase Trocadora de Sódio-Potássio/genética , Idade de Início , Pré-Escolar , Análise Mutacional de DNA/métodos , Feminino , Hemiplegia/diagnóstico , Humanos , Lactente , Masculino , Enxaqueca com Aura/diagnóstico , Linhagem , Fenótipo , Alinhamento de Sequência/métodos , Treonina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA