Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 268(Pt B): 115709, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33010675

RESUMO

Metal pollution is a great concern worldwide and the development of new technologies for more sustainable extraction methods as well as for the remediation of polluted sites is essential. Extremophilic microorganisms are attractive for this purpose since they have poly-resistance mechanisms which make them versatile. In this work, we sampled an acidic river and a hot spring of Caviahue-Copahue volcanic environment. The indigenous microbial communities were exposed to five heavy metals (Cd, Co, Cu, Ni and Zn) in batch-cultures favouring different metabolisms of biotechnological interest. Remarkably, high tolerance values were reached in all the cultures, even though most of the metals studied were not present in the environmental sample. Particularly, outstanding tolerances were exhibited by acidophiles, which grew at concentrations as high as 400 mM of Zn and Ni. High-throughput amplicon sequencing of 16S rRNA gene was used to study the indigenous communities and the resistant consortia. We took three approaches for the analysis: phylotypes, OTUs and amplicon sequence variants (ASVs). Interestingly, similar conclusions were drawn in all three cases. Analysing the phylogenetic structure and functional potential of the adapted consortia, we found that the strongest selection was exerted by the culture media. Notably, there was a poor correlation between alpha diversity and metal stress; furthermore, metal stress did not seem to harm the functional potential of the consortia. All these results reveal a great adaptability and versatility. At the end, 25 metal-resistant extremophilic consortia with potential uses in bioremediation, bioleaching or biomonitoring processes were obtained.


Assuntos
Extremófilos , Metais Pesados , Microbiota , Argentina , Metais Pesados/análise , Filogenia , RNA Ribossômico 16S/genética
2.
Microorganisms ; 8(6)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560103

RESUMO

The study of microbial communities from extreme environments is a fascinating topic. With every study, biologists and ecologists reveal interesting facts and questions that dispel the old belief that these are inhospitable environments. In this work, we assess the microbial diversity of three hot springs from Neuquén, Argentina, using high-throughput amplicon sequencing. We predicted a distinct metabolic profile in the acidic and the circumneutral samples, with the first ones being dominated by chemolithotrophs and the second ones by chemoheterotrophs. Then, we collected data of the microbial communities of hot springs around the world in an effort to comprehend the roles of pH and temperature as shaping factors. Interestingly, there was a covariation between both parameters and the phylogenetic distance between communities; however, neither of them could explain much of the microbial profile in an ordination model. Moreover, there was no correlation between alpha diversity and these parameters. Therefore, the microbial communities' profile seemed to have complex shaping factors beyond pH and temperature. Lastly, we looked for taxa associated with different environmental conditions. Several such taxa were found. For example, Hydrogenobaculum was frequently present in acidic springs, as was the Sulfolobaceae family; on the other hand, Candidatus Hydrothermae phylum was strongly associated with circumneutral conditions. Interestingly, some singularities related to sites featuring certain taxa were also observed.

3.
Microorganisms ; 8(1)2019 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-31905732

RESUMO

The Copahue volcano-Río Agrio system, on Patagonia Argentina, comprises the naturally acidic river Río Agrio, that runs from a few meters down the Copahue volcano crater to more than 40 km maintaining low pH waters, and the acidic lagoon that sporadically forms on the crater of the volcano, which is studied for the first time in this work. We used next-generation sequencing of the 16S rRNA gene of the entire prokaryotic community to study the biodiversity of this poorly explored extreme environment. The correlation of the operational taxonomic units (OTUs)s presence with physicochemical variables showed that the system contains three distinct environments: the crater lagoon, the Upper Río Agrio, and the Salto del Agrio waterfall, a point located approximately 12 km down the origin of the river, after it emerges from the Caviahue lake. The prokaryotic community of the Copahue Volcano-Río Agrio system is mainly formed by acidic bacteria and archaea, such as Acidithiobacillus, Ferroplasma, and Leptospirillum, which have been isolated from similar environments around the world. These results support the idea of a ubiquitous acidic biodiversity; however, this highly interesting extreme environment also has apparently autochthonous species such as Sulfuriferula, Acidianus copahuensis, and strains of Acidibacillus and Alicyclobacillus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA