Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 192: 109011, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39305789

RESUMO

INTRODUCTION: A causal link between air pollution exposure and cardiovascular events has been suggested. However fewer studies have investigated the shape of the associations at low levels of air pollution and identified the most important temporal window of exposure. Here we assessed long-term associations between particulate matter < 2.5 µm (PM2.5) at low concentrations and multiple cardiovascular endpoints using the UK Biobank cohort. METHODS: Using data on adults (aged > 40) from the UK Biobank cohort, we investigated the associations between 1-year, 3-year and 5-year time-varying averages of PM2.5 and incidence of major adverse cardiovascular events (MACE), myocardial infarction (MI), heart failure, atrial fibrillation and flutter and cardiac arrest. We also investigated outcome subtypes for MI and stroke. Events were defined as hospital inpatient admissions. We fitted Cox proportional hazard regression models applying extensive control for confounding at both individual and area level. Finally, we assessed the shape of the exposure-response functions to assess effects at low levels of exposure. RESULTS: We analysed data from 377,736 study participants after exclusion of prevalent subjects. The average follow-up (2006-2021) was 12.9 years. We detected 19,353 cases of MACE, 6,562 of acute MI, 6,278 of heart failure, 1,258 for atrial fibrillation and flutter, and 16,327 for cardiac arrest. Using a 5-year exposure window, we detected positive associations (for 5 µg/m3 increase in PM2.5) for 5-point MACE of [1.12 (95 %CI: 1.00-1.26)], heart failure [1.22 (1.00-1.50)] and cardiac arrest [1.16 (1.03-1.31)]. We did not find any association with acute MI, while non-ST-elevation MI was associated with the 1-year exposure window [1.52 (1.12-2.07)]. The assessment of the shape of the exposure-response relationships suggested that risk is approximately linear for most of the outcomes. CONCLUSIONS: We found positive associations between long-term exposure to PM2.5 and multiple cardiovascular outcomes for different exposure windows. The cardiovascular risk tends to rise even at exposure concentrations below 12-15 µg/m3, indicating high risk below UK national and international thresholds.

2.
Environ Res ; 263(Pt 1): 120023, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39293751

RESUMO

BACKGROUND: Evidence suggests that air pollution modifies the association between heat and mortality. However, most studies have been conducted in cities without rural data. This time-series study examined potential effect modification of particulate matter (PM) and ozone (O3) on heat-related mortality using small-area data from five European countries, and explored the influence of area characteristics. METHODS: We obtained daily non-accidental death counts from both urban and rural areas in Norway, England and Wales, Germany, Italy, and the Attica region of Greece during the warm season (2000-2018). Daily mean temperatures and air pollutant concentrations were estimated by spatial-temporal models. Heat effect modification by air pollution was assessed in each small area by over-dispersed Poisson regression models with a tensor smoother between temperature and air pollution. We extracted temperature-mortality relationships at the 5th (low), 50th (medium), and 95th (high) percentiles of pollutant distributions. At each air pollution level, we estimated heat-related mortality for a temperature increase from the 75th to the 99th percentile. We applied random-effects meta-analysis to derive the country-specific and overall associations, and mixed-effects meta-regression to examine the influence of urban-rural and coastal typologies and greenness on the heat effect modification by air pollution. RESULTS: Heat-related mortality risks increased with higher PM levels, rising by 6.4% (95% CI: -2.0%-15.7%), 10.7% (2.6%-19.5%), and 14.1% (4.4%-24.6%) at low, medium, and high PM levels, respectively. This effect modification was consistent in urban and rural regions but more pronounced in non-coastal regions. In addition, heat-mortality associations were slightly stronger at high O3 levels, particularly in regions with low greenness. CONCLUSION: Our analyses of both urban and rural data indicate that air pollution may intensify heat-related mortality, particularly in non-coastal and less green regions. The synergistic effect of heat and air pollution implies a potential pathway of reducing heat-related health impacts by improving air quality.

3.
Lancet Planet Health ; 8(9): e657-e665, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39243781

RESUMO

BACKGROUND: Ambient air pollution, including particulate matter (such as PM10 and PM2·5) and nitrogen dioxide (NO2), has been linked to increases in mortality. Whether populations' vulnerability to these pollutants has changed over time is unclear, and studies on this topic do not include multicountry analysis. We evaluated whether changes in exposure to air pollutants were associated with changes in mortality effect estimates over time. METHODS: We extracted cause-specific mortality and air pollution data collected between 1995 and 2016 from the Multi-Country Multi-City (MCC) Collaborative Research Network database. We applied a two-stage approach to analyse the short-term effects of NO2, PM10, and PM2·5 on cause-specific mortality using city-specific time series regression analyses and multilevel random-effects meta-analysis. We assessed changes over time using a longitudinal meta-regression with time as a linear fixed term and explored potential sources of heterogeneity and two-pollutant models. FINDINGS: Over 21·6 million cardiovascular and 7·7 million respiratory deaths in 380 cities across 24 countries over the study period were included in the analysis. All three air pollutants showed decreasing concentrations over time. The pooled results suggested no significant temporal change in the effect estimates per unit exposure of PM10, PM2·5, or NO2 and mortality. However, the risk of cardiovascular mortality increased from 0·37% (95% CI -0·05 to 0·80) in 1998 to 0·85% (0·55 to 1·16) in 2012 with a 10 µg/m3 increase in PM2·5. Two-pollutant models generally showed similar results to single-pollutant models for PM fractions and indicated temporal differences for NO2. INTERPRETATION: Although air pollution levels decreased during the study period, the effect sizes per unit increase in air pollution concentration have not changed. This observation might be due to the composition, toxicity, and sources of air pollution, as well as other factors, such as socioeconomic determinants or changes in population distribution and susceptibility. FUNDING: None.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Cidades , Dióxido de Nitrogênio , Material Particulado , Doenças Respiratórias , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Humanos , Material Particulado/análise , Material Particulado/efeitos adversos , Doenças Cardiovasculares/mortalidade , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Doenças Respiratórias/mortalidade , Doenças Respiratórias/induzido quimicamente , Exposição Ambiental/efeitos adversos
4.
Lancet Public Health ; 9(9): e644-e653, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39181156

RESUMO

BACKGROUND: Excessively high and low temperatures substantially affect human health. Climate change is expected to exacerbate heat-related morbidity and mortality, presenting unprecedented challenges to public health systems. Since localised assessments of temperature-related mortality risk are essential to formulate effective public health responses and adaptation strategies, we aimed to estimate the current and future temperature-related mortality risk under four climate change scenarios across all European regions. METHODS: We modelled current and future mortality due to non-optimal temperatures across 1368 European regions, considering age-specific characteristics and local socioeconomic vulnerabilities. Overseas territories were excluded from the analysis. We applied a three-stage method to estimate temperature-related risk continuously across age and spatial dimensions. Age and city-specific exposure-response functions were obtained for a comprehensive list of 854 European cities from the Urban Audit dataset of Eurostat. Regional aggregates were calculated using an aggregation and extrapolation method that incorporates the risk incidence in neighbouring cities. Mortality was projected for present conditions observed in 1991-2020 and for four different levels of global warming (1·5°C, 2°C, 3°C, and 4°C increase) by regions, and subregions using an ensemble of 11 climate models produced by the Coordinated Regional Climate Downscaling Experiment-CMIP5 over Europe, and population projection data from EUROPOP2019. FINDINGS: Our results highlight regional disparities in temperature-related mortality across Europe. Between 1991 and 2020, the number of cold-related deaths was 2·5 times higher in eastern Europe than western Europe, and heat-related deaths were 6 times higher in southern Europe than in northern Europe. During the same time period, there were a median of 363 809 cold-related deaths (empirical 95% CI 362 493-365 310) and 43 729 heat-related deaths (39 880-45 921), with a cold-to-heat-related death ratio of 8·3:1. Under current climate policies, aligned with 3°C increase in global warming, it is estimated that temperature-related deaths could increase by 54 974 additional deaths (24 112-80 676) by 2100, driven by rising heat-related deaths and an ageing population, resulting in a cold-to-heat-related death ratio of 2·6:1. Climate change is also expected to widen disparities in regional mortality, particularly impacting southern regions of Europe as a result of a marked increase in heat-related deaths. INTERPRETATION: This study shows that regional disparities in temperature-related mortality risk in Europe are substantial and will continue to increase due to the effects of climate change and an ageing population. The data presented can assist policy makers and health authorities in mitigating increasing health inequalities by prioritising the protection of more susceptible areas and older population groups. We identify the projected areas of heightened risk (southern Europe), where policy intervention aimed at building adaptation and enhancing resilience should be prioritised. FUNDING: European Commission.


Assuntos
Mudança Climática , Humanos , Europa (Continente)/epidemiologia , Idoso , Pessoa de Meia-Idade , Adulto , Adolescente , Adulto Jovem , Criança , Pré-Escolar , Mortalidade/tendências , Lactente , Temperatura Alta/efeitos adversos , Idoso de 80 Anos ou mais , Modelos Teóricos , Recém-Nascido , Previsões
5.
Atmos Pollut Res ; 15(11): 102284, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39175565

RESUMO

In this contribution, we applied a multi-stage machine learning (ML) framework to map daily values of nitrogen dioxide (NO2) and particulate matter (PM10 and PM2.5) at a 1 km2 resolution over Great Britain for the period 2003-2021. The process combined ground monitoring observations, satellite-derived products, climate reanalyses and chemical transport model datasets, and traffic and land-use data. Each feature was harmonized to 1 km resolution and extracted at monitoring sites. Models used single and ensemble-based algorithms featuring random forests (RF), extreme gradient boosting (XGB), light gradient boosting machine (LGBM), as well as lasso and ridge regression. The various stages focused on augmenting PM2.5 using co-occurring PM10 values, gap-filling aerosol optical depth and columnar NO2 data obtained from satellite instruments, and finally the training of an ensemble model and the prediction of daily values across the whole geographical domain (2003-2021). Results show a good ensemble model performance, calculated through a ten-fold monitor-based cross-validation procedure, with an average R2 of 0.690 (range 0.611-0.792) for NO2, 0.704 (0.609-0.786) for PM10, and 0.802 (0.746-0.888) for PM2.5. Reconstructed pollution levels decreased markedly within the study period, with a stronger reduction in the latter eight years. The pollutants exhibited different spatial patterns, while NO2 rose in close proximity to high-traffic areas, PM demonstrated variation at a larger scale. The resulting 1 km2 spatially resolved daily datasets allow for linkage with health data across Great Britain over nearly two decades, thus contributing to extensive, extended, and detailed research on the long-and short-term health effects of air pollution.

6.
PNAS Nexus ; 3(8): pgae290, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39114575

RESUMO

The rising humid heat is regarded as a severe threat to human survivability, but the proper integration of humid heat into heat-health alerts is still being explored. Using state-of-the-art epidemiological and climatological datasets, we examined the association between multiple heat stress indicators (HSIs) and daily human mortality in 739 cities worldwide. Notable differences were observed in the long-term trends and timing of heat events detected by HSIs. Air temperature (Tair) predicts heat-related mortality well in cities with a robust negative Tair-relative humidity correlation (CT-RH). However, in cities with near-zero or weak positive CT-RH, HSIs considering humidity provide enhanced predictive power compared to Tair. Furthermore, the magnitude and timing of heat-related mortality measured by HSIs could differ largely from those associated with Tair in many cities. Our findings provide important insights into specific regions where humans are vulnerable to humid heat and can facilitate the further enhancement of heat-health alert systems.

7.
Environ Res ; 257: 119324, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38844028

RESUMO

BACKGROUND: As the world becomes increasingly urbanised, there is recognition that public and planetary health relies upon a ubiquitous transition to sustainable cities. Disentanglement of the complex pathways of urban design, environmental exposures, and health, and the magnitude of these associations, remains a challenge. A state-of-the-art account of large-scale urban health studies is required to shape future research priorities and equity- and evidence-informed policies. OBJECTIVES: The purpose of this review was to synthesise evidence from large-scale urban studies focused on the interaction between urban form, transport, environmental exposures, and health. This review sought to determine common methodologies applied, limitations, and future opportunities for improved research practice. METHODS: Based on a literature search, 2958 articles were reviewed that covered three themes of: urban form; urban environmental health; and urban indicators. Studies were prioritised for inclusion that analysed at least 90 cities to ensure broad geographic representation and generalisability. Of the initially identified studies, following expert consultation and exclusion criteria, 66 were included. RESULTS: The complexity of the urban ecosystem on health was evidenced from the context dependent effects of urban form variables on environmental exposures and health. Compact city designs were generally advantageous for reducing harmful environmental exposure and promoting health, with some exceptions. Methodological heterogeneity was indicative of key urban research challenges; notable limitations included exposure and health data at varied spatial scales and resolutions, limited availability of local-level sociodemographic data, and the lack of consensus on robust methodologies that encompass best research practice. CONCLUSION: Future urban environmental health research for evidence-informed urban planning and policies requires a multi-faceted approach. Advances in geospatial and AI-driven techniques and urban indicators offer promising developments; however, there remains a wider call for increased data availability at local-levels, transparent and robust methodologies of large-scale urban studies, and greater exploration of urban health vulnerabilities and inequities.


Assuntos
Cidades , Humanos , Exposição Ambiental , Meios de Transporte , Saúde da População Urbana , Saúde Ambiental/métodos
8.
One Earth ; 7(2): 325-335, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38420618

RESUMO

Short-term exposure to ground-level ozone in cities is associated with increased mortality and is expected to worsen with climate and emission changes. However, no study has yet comprehensively assessed future ozone-related acute mortality across diverse geographic areas, various climate scenarios, and using CMIP6 multi-model ensembles, limiting our knowledge on future changes in global ozone-related acute mortality and our ability to design targeted health policies. Here, we combine CMIP6 simulations and epidemiological data from 406 cities in 20 countries or regions. We find that ozone-related deaths in 406 cities will increase by 45 to 6,200 deaths/year between 2010 and 2014 and between 2050 and 2054, with attributable fractions increasing in all climate scenarios (from 0.17% to 0.22% total deaths), except the single scenario consistent with the Paris Climate Agreement (declines from 0.17% to 0.15% total deaths). These findings stress the need for more stringent air quality regulations, as current standards in many countries are inadequate.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38191925

RESUMO

Recent developments in linkage procedures and exposure modelling offer great prospects for cohort analyses on the health risks of environmental factors. However, assigning individual-level exposures to large population-based cohorts poses methodological and practical problems. In this contribution, we illustrate a linkage framework to reconstruct environmental exposures for individual-level epidemiological analyses, discussing methodological and practical issues such as residential mobility and privacy concerns. The framework outlined here requires the availability of individual residential histories with related time periods, as well as high-resolution spatio-temporal maps of environmental exposures. The linkage process is carried out in three steps: (1) spatial alignment of the exposure maps and residential locations to extract address-specific exposure series; (2) reconstruction of individual-level exposure histories accounting for residential changes during the follow-up; (3) flexible definition of exposure summaries consistent with alternative research questions and epidemiological designs. The procedure is exemplified by the linkage and processing of daily averages of air pollution for the UK Biobank cohort using gridded spatio-temporal maps across Great Britain. This results in the extraction of exposure summaries suitable for epidemiological analyses of both short and long-term risk associations and, in general, for the investigation of temporal dependencies. The linkage framework presented here is generally applicable to multiple environmental stressors and can be extended beyond the reconstruction of residential exposures. IMPACT: This contribution describes a linkage framework to assign individual-level environmental exposures to population-based cohorts using high-resolution spatio-temporal exposure. The framework can be used to address current limitations of exposure assessment for the analysis of health risks associated with environmental stressors. The linkage of detailed exposure information at the individual level offers the opportunity to define flexible exposure summaries tailored to specific study designs and research questions. The application of the framework is exemplified by the linkage of fine particulate matter (PM2.5) exposures to the UK Biobank cohort.

10.
Environ Int ; 183: 108367, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061245

RESUMO

BACKGROUND: Recent studies have reported that air pollution is related to kidney diseases. However, the global evidence on the risk of death from acute kidney injury (AKI) owing to air pollution is limited. Therefore, we investigated the association between short-term exposure to air pollution-particulate matter ≤ 2.5 µm (PM2.5), ozone (O3), and nitrogen dioxide (NO2)-and AKI-related mortality using a multi-country dataset. METHODS: This study included 41,379 AKI-related deaths in 136 locations in six countries during 1987-2018. A novel case time-series design was applied to each air pollutant during 0-28 lag days to estimate the association between air pollution and AKI-related deaths. Moreover, we calculated AKI deaths attributable to non-compliance with the World Health Organization (WHO) air quality guidelines. RESULTS: The relative risks (95% confidence interval) of AKI-related deaths are 1.052 (1.003, 1.103), 1.022 (0.994, 1.050), and 1.022 (0.982, 1.063) for 5, 10, and 10 µg/m3 increase in lag 0-28 days of PM2.5, warm-season O3, and NO2, respectively. The lag-distributed association showed that the risk appeared immediately on the day of exposure to air pollution, gradually decreased, and then increased again reaching the peak approximately 20 days after exposure to PM2.5 and O3. We also found that 1.9%, 6.3%, and 5.2% of AKI deaths were attributed to PM2.5, warm-season O3, and NO2 concentrations above the WHO guidelines. CONCLUSIONS: This study provides evidence that public health policies to reduce air pollution may alleviate the burden of death from AKI and suggests the need to investigate the several pathways between air pollution and AKI death.


Assuntos
Injúria Renal Aguda , Poluentes Atmosféricos , Poluição do Ar , Ozônio , Humanos , Dióxido de Nitrogênio/análise , Exposição Ambiental/análise , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Material Particulado/análise , Ozônio/análise
11.
Nat Commun ; 14(1): 7438, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978178

RESUMO

As the climate warms, increasing heat-related health risks are expected, and can be exacerbated by the urban heat island (UHI) effect. UHIs can also offer protection against cold weather, but a clear quantification of their impacts on human health across diverse cities and seasons is still being explored. Here we provide a 500 m resolution assessment of mortality risks associated with UHIs for 85 European cities in 2015-2017. Acute impacts are found during heat extremes, with a 45% median increase in mortality risk associated with UHI, compared to a 7% decrease during cold extremes. However, protracted cold seasons result in greater integrated protective effects. On average, UHI-induced heat-/cold-related mortality is associated with economic impacts of €192/€ - 314 per adult urban inhabitant per year in Europe, comparable to air pollution and transit costs. These findings urge strategies aimed at designing healthier cities to consider the seasonality of UHI impacts, and to account for social costs, their controlling factors, and intra-urban variability.


Assuntos
Clima , Temperatura Alta , Humanos , Cidades , Temperatura , Estações do Ano
12.
BMJ ; 383: e075203, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37793695

RESUMO

OBJECTIVE: To investigate potential interactive effects of fine particulate matter (PM2.5) and ozone (O3) on daily mortality at global level. DESIGN: Two stage time series analysis. SETTING: 372 cities across 19 countries and regions. POPULATION: Daily counts of deaths from all causes, cardiovascular disease, and respiratory disease. MAIN OUTCOME MEASURE: Daily mortality data during 1994-2020. Stratified analyses by co-pollutant exposures and synergy index (>1 denotes the combined effect of pollutants is greater than individual effects) were applied to explore the interaction between PM2.5 and O3 in association with mortality. RESULTS: During the study period across the 372 cities, 19.3 million deaths were attributable to all causes, 5.3 million to cardiovascular disease, and 1.9 million to respiratory disease. The risk of total mortality for a 10 µg/m3 increment in PM2.5 (lag 0-1 days) ranged from 0.47% (95% confidence interval 0.26% to 0.67%) to 1.25% (1.02% to 1.48%) from the lowest to highest fourths of O3 concentration; and for a 10 µg/m3 increase in O3 ranged from 0.04% (-0.09% to 0.16%) to 0.29% (0.18% to 0.39%) from the lowest to highest fourths of PM2.5 concentration, with significant differences between strata (P for interaction <0.001). A significant synergistic interaction was also identified between PM2.5 and O3 for total mortality, with a synergy index of 1.93 (95% confidence interval 1.47 to 3.34). Subgroup analyses showed that interactions between PM2.5 and O3 on all three mortality endpoints were more prominent in high latitude regions and during cold seasons. CONCLUSION: The findings of this study suggest a synergistic effect of PM2.5 and O3 on total, cardiovascular, and respiratory mortality, indicating the benefit of coordinated control strategies for both pollutants.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Poluentes Ambientais , Ozônio , Transtornos Respiratórios , Doenças Respiratórias , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Ozônio/efeitos adversos , Ozônio/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Cidades , Fatores de Tempo , Exposição Ambiental/efeitos adversos
13.
Environ Epidemiol ; 7(5): e269, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37840857

RESUMO

Background: Heat effects on respiratory mortality are known, mostly from time-series studies of city-wide data. A limited number of studies have been conducted at the national level or covering non-urban areas. Effect modification by area-level factors has not been extensively investigated. Our study assessed the heat effects on respiratory mortality at a small administrative area level in Norway, Germany, and England and Wales, in the warm period (May-September) within 1996-2018. Also, we examined possible effect modification by several area-level characteristics in the framework of the EU-Horizon2020 EXHAUSTION project. Methods: Daily respiratory mortality counts and modeled air temperature data were collected for Norway, Germany, and England and Wales at a small administrative area level. The temperature-mortality association was assessed by small area-specific Poisson regression allowing for overdispersion, using distributed lag non-linear models. Estimates were pooled at the national level and overall using a random-effect meta-analysis. Age- and sex-specific models were also applied. A multilevel random-effects model was applied to investigate the modification of the heat effects by area-level factors. Results: A rise in temperature from the 75th to 99th percentile was associated with a 27% (95% confidence interval [CI] = 19%, 34%) increase in respiratory mortality, with higher effects for females. Increased population density and PM2.5 concentrations were associated with stronger heat effects on mortality. Conclusions: Our study strengthens the evidence of adverse heat effects on respiratory mortality in Northern Europe by identifying vulnerable subgroups and subregions. This may contribute to the development of targeted policies for adaptation to climate change.

14.
Environ Int ; 179: 108154, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37603993

RESUMO

BACKGROUND: Short-term associations between heat and cardiovascular disease (CVD) mortality have been examined mostly in large cities. However, different vulnerability and exposure levels may contribute to spatial heterogeneity. This study assessed heat effects on CVD mortality and potential vulnerability factors using data from three European countries, including urban and rural settings. METHODS: We collected daily counts of CVD deaths aggregated at the small-area level in Norway (small-area level: municipality), England and Wales (lower super output areas), and Germany (district) during the warm season (May-September) from 1996 to 2018. Daily mean air temperatures estimated by spatial-temporal models were assigned to each small area. Within each country, we applied area-specific Quasi-Poisson regression using distributed lag nonlinear models to examine the heat effects at lag 0-1 days. The area-specific estimates were pooled by random-effects meta-analysis to derive country-specific and overall heat effects. We examined individual- and area-level heat vulnerability factors by subgroup analyses and meta-regression, respectively. RESULTS: We included 2.84 million CVD deaths in analyses. For an increase in temperature from the 75th to the 99th percentile, the pooled relative risk (RR) for CVD mortality was 1.14 (95% CI: 1.03, 1.26), with the country-specific RRs ranging from 1.04 (1.00, 1.09) in Norway to 1.24 (1.23, 1.26) in Germany. Heat effects were stronger among women [RRs (95% CIs) for women and men: 1.18 (1.08, 1.28) vs. 1.12 (1.00, 1.24)]. Greater heat vulnerability was observed in areas with high population density, high degree of urbanization, low green coverage, and high levels of fine particulate matter. CONCLUSION: This study provides evidence for the heat effects on CVD mortality in European countries using high-resolution data from both urban and rural areas. Besides, we identified individual- and area-level heat vulnerability factors. Our findings may facilitate the development of heat-health action plans to increase resilience to climate change.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Masculino , Feminino , Humanos , Temperatura Alta , Europa (Continente)/epidemiologia , Alemanha
15.
Lancet Planet Health ; 7(8): e694-e705, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37558350

RESUMO

BACKGROUND: The global spatiotemporal pattern of mortality risk and burden attributable to tropical cyclones is unclear. We aimed to evaluate the global short-term mortality risk and burden associated with tropical cyclones from 1980 to 2019. METHODS: The wind speed associated with cyclones from 1980 to 2019 was estimated globally through a parametric wind field model at a grid resolution of 0·5°â€ˆ× 0·5°. A total of 341 locations with daily mortality and temperature data from 14 countries that experienced at least one tropical cyclone day (a day with maximum sustained wind speed associated with cyclones ≥17·5 m/s) during the study period were included. A conditional quasi-Poisson regression with distributed lag non-linear model was applied to assess the tropical cyclone-mortality association. A meta-regression model was fitted to evaluate potential contributing factors and estimate grid cell-specific tropical cyclone effects. FINDINGS: Tropical cyclone exposure was associated with an overall 6% (95% CI 4-8) increase in mortality in the first 2 weeks following exposure. Globally, an estimate of 97 430 excess deaths (95% empirical CI [eCI] 71 651-126 438) per decade were observed over the 2 weeks following exposure to tropical cyclones, accounting for 20·7 (95% eCI 15·2-26·9) excess deaths per 100 000 residents (excess death rate) and 3·3 (95% eCI 2·4-4·3) excess deaths per 1000 deaths (excess death ratio) over 1980-2019. The mortality burden exhibited substantial temporal and spatial variation. East Asia and south Asia had the highest number of excess deaths during 1980-2019: 28 744 (95% eCI 16 863-42 188) and 27 267 (21 157-34 058) excess deaths per decade, respectively. In contrast, the regions with the highest excess death ratios and rates were southeast Asia and Latin America and the Caribbean. From 1980-99 to 2000-19, marked increases in tropical cyclone-related excess death numbers were observed globally, especially for Latin America and the Caribbean and south Asia. Grid cell-level and country-level results revealed further heterogeneous spatiotemporal patterns such as the high and increasing tropical cyclone-related mortality burden in Caribbean countries or regions. INTERPRETATION: Globally, short-term exposure to tropical cyclones was associated with a significant mortality burden, with highly heterogeneous spatiotemporal patterns. In-depth exploration of tropical cyclone epidemiology for those countries and regions estimated to have the highest and increasing tropical cyclone-related mortality burdens is urgently needed to help inform the development of targeted actions against the increasing adverse health impacts of tropical cyclones under a changing climate. FUNDING: Australian Research Council and Australian National Health and Medical Research Council.


Assuntos
Tempestades Ciclônicas , Austrália , Clima , Temperatura , Vento
16.
Environ Int ; 174: 107825, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36934570

RESUMO

BACKGROUND: Evidence on the potential interactive effects of heat and ambient air pollution on cause-specific mortality is inconclusive and limited to selected locations. OBJECTIVES: We investigated the effects of heat on cardiovascular and respiratory mortality and its modification by air pollution during summer months (six consecutive hottest months) in 482 locations across 24 countries. METHODS: Location-specific daily death counts and exposure data (e.g., particulate matter with diameters ≤ 2.5 µm [PM2.5]) were obtained from 2000 to 2018. We used location-specific confounder-adjusted Quasi-Poisson regression with a tensor product between air temperature and the air pollutant. We extracted heat effects at low, medium, and high levels of pollutants, defined as the 5th, 50th, and 95th percentile of the location-specific pollutant concentrations. Country-specific and overall estimates were derived using a random-effects multilevel meta-analytical model. RESULTS: Heat was associated with increased cardiorespiratory mortality. Moreover, the heat effects were modified by elevated levels of all air pollutants in most locations, with stronger effects for respiratory than cardiovascular mortality. For example, the percent increase in respiratory mortality per increase in the 2-day average summer temperature from the 75th to the 99th percentile was 7.7% (95% Confidence Interval [CI] 7.6-7.7), 11.3% (95%CI 11.2-11.3), and 14.3% (95% CI 14.1-14.5) at low, medium, and high levels of PM2.5, respectively. Similarly, cardiovascular mortality increased by 1.6 (95%CI 1.5-1.6), 5.1 (95%CI 5.1-5.2), and 8.7 (95%CI 8.7-8.8) at low, medium, and high levels of O3, respectively. DISCUSSION: We observed considerable modification of the heat effects on cardiovascular and respiratory mortality by elevated levels of air pollutants. Therefore, mitigation measures following the new WHO Air Quality Guidelines are crucial to enhance better health and promote sustainable development.


Assuntos
Poluição do Ar , Doenças Cardiovasculares , Exposição Ambiental , Humanos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , Doenças Cardiovasculares/mortalidade , Cidades/epidemiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluentes Ambientais , Temperatura Alta , Mortalidade , Material Particulado/efeitos adversos , Material Particulado/análise , Doenças Respiratórias/epidemiologia
17.
Lancet Planet Health ; 7(4): e271-e281, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36934727

RESUMO

BACKGROUND: Heat and cold are established environmental risk factors for human health. However, mapping the related health burden is a difficult task due to the complexity of the associations and the differences in vulnerability and demographic distributions. In this study, we did a comprehensive mortality impact assessment due to heat and cold in European urban areas, considering geographical differences and age-specific risks. METHODS: We included urban areas across Europe between Jan 1, 2000, and Dec 12, 2019, using the Urban Audit dataset of Eurostat and adults aged 20 years and older living in these areas. Data were extracted from Eurostat, the Multi-country Multi-city Collaborative Research Network, Moderate Resolution Imaging Spectroradiometer, and Copernicus. We applied a three-stage method to estimate risks of temperature continuously across the age and space dimensions, identifying patterns of vulnerability on the basis of city-specific characteristics and demographic structures. These risks were used to derive minimum mortality temperatures and related percentiles and raw and standardised excess mortality rates for heat and cold aggregated at various geographical levels. FINDINGS: Across the 854 urban areas in Europe, we estimated an annual excess of 203 620 (empirical 95% CI 180 882-224 613) deaths attributed to cold and 20 173 (17 261-22 934) attributed to heat. These corresponded to age-standardised rates of 129 (empirical 95% CI 114-142) and 13 (11-14) deaths per 100 000 person-years. Results differed across Europe and age groups, with the highest effects in eastern European cities for both cold and heat. INTERPRETATION: Maps of mortality risks and excess deaths indicate geographical differences, such as a north-south gradient and increased vulnerability in eastern Europe, as well as local variations due to urban characteristics. The modelling framework and results are crucial for the design of national and local health and climate policies and for projecting the effects of cold and heat under future climatic and socioeconomic scenarios. FUNDING: Medical Research Council of UK, the Natural Environment Research Council UK, the EU's Horizon 2020, and the EU's Joint Research Center.


Assuntos
Temperatura Baixa , Avaliação do Impacto na Saúde , Temperatura Alta , Adulto , Humanos , Cidades , Europa (Continente)
18.
Environ Health Perspect ; 131(3): 37002, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36883823

RESUMO

BACKGROUND: Epidemiological evidence on the health risks of sulfur dioxide (SO2) is more limited compared with other pollutants, and doubts remain on several aspects, such as the form of the exposure-response relationship, the potential role of copollutants, as well as the actual risk at low concentrations and possible temporal variation in risks. OBJECTIVES: Our aim was to assess the short-term association between exposure to SO2 and daily mortality in a large multilocation data set, using advanced study designs and statistical techniques. METHODS: The analysis included 43,729,018 deaths that occurred in 399 cities within 23 countries between 1980 and 2018. A two-stage design was applied to assess the association between the daily concentration of SO2 and mortality counts, including first-stage time-series regressions and second-stage multilevel random-effect meta-analyses. Secondary analyses assessed the exposure-response shape and the lag structure using spline terms and distributed lag models, respectively, and temporal variations in risk using a longitudinal meta-regression. Bi-pollutant models were applied to examine confounding effects of particulate matter with an aerodynamic diameter of ≤10µm (PM10) and 2.5µm (PM2.5), ozone, nitrogen dioxide, and carbon monoxide. Associations were reported as relative risks (RRs) and fractions of excess deaths. RESULTS: The average daily concentration of SO2 across the 399 cities was 11.7 µg/m3, with 4.7% of days above the World Health Organization (WHO) guideline limit (40 µg/m3, 24-h average), although the exceedances occurred predominantly in specific locations. Exposure levels decreased considerably during the study period, from an average concentration of 19.0 µg/m3 in 1980-1989 to 6.3 µg/m3 in 2010-2018. For all locations combined, a 10-µg/m3 increase in daily SO2 was associated with an RR of mortality of 1.0045 [95% confidence interval (CI): 1.0019, 1.0070], with the risk being stable over time but with substantial between-country heterogeneity. Short-term exposure to SO2 was associated with an excess mortality fraction of 0.50% [95% empirical CI (eCI): 0.42%, 0.57%] in the 399 cities, although decreasing from 0.74% (0.61%, 0.85%) in 1980-1989 to 0.37% (0.27%, 0.47%) in 2010-2018. There was some evidence of nonlinearity, with a steep exposure-response relationship at low concentrations and the risk attenuating at higher levels. The relevant lag window was 0-3 d. Significant positive associations remained after controlling for other pollutants. DISCUSSION: The analysis revealed independent mortality risks associated with short-term exposure to SO2, with no evidence of a threshold. Levels below the current WHO guidelines for 24-h averages were still associated with substantial excess mortality, indicating the potential benefits of stricter air quality standards. https://doi.org/10.1289/EHP11112.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Poluentes Ambientais , Humanos , Dióxido de Enxofre/toxicidade , Poluentes Atmosféricos/análise , Cidades/epidemiologia , Poluição do Ar/análise , Material Particulado/análise , Poluentes Ambientais/análise , Dióxido de Nitrogênio/análise , Exposição Ambiental/análise , Mortalidade
19.
Lancet ; 401(10376): 577-589, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36736334

RESUMO

BACKGROUND: High ambient temperatures are associated with many health effects, including premature mortality. The combination of global warming due to climate change and the expansion of the global built environment mean that the intensification of urban heat islands (UHIs) is expected, accompanied by adverse effects on population health. Urban green infrastructure can reduce local temperatures. We aimed to estimate the mortality burden that could be attributed to UHIs and the mortality burden that would be prevented by increasing urban tree coverage in 93 European cities. METHODS: We did a quantitative health impact assessment for summer (June 1-Aug 31), 2015, of the effect of UHIs on all-cause mortality for adults aged 20 years or older in 93 European cities. We also estimated the temperature reductions that would result from increasing tree coverage to 30% for each city and estimated the number of deaths that could be potentially prevented as a result. We did all analyses at a high-resolution grid-cell level (250 × 250 m). We propagated uncertainties in input analyses by using Monte Carlo simulations to obtain point estimates and 95% CIs. We also did sensitivity analyses to test the robustness of our estimates. FINDINGS: The population-weighted mean city temperature increase due to UHI effects was 1·5°C (SD 0·5; range 0·5-3·0). Overall, 6700 (95% CI 5254-8162) premature deaths could be attributable to the effects of UHIs (corresponding to around 4·33% [95% CI 3·37-5·28] of all summer deaths). We estimated that increasing tree coverage to 30% would cool cities by a mean of 0·4°C (SD 0·2; range 0·0-1·3). We also estimated that 2644 (95% CI 2444-2824) premature deaths could be prevented by increasing city tree coverage to 30%, corresponding to 1·84% (1·69-1·97) of all summer deaths. INTERPRETATION: Our results showed the deleterious effects of UHIs on mortality and highlighted the health benefits of increasing tree coverage to cool urban environments, which would also result in more sustainable and climate-resilient cities. FUNDING: GoGreenRoutes, Spanish Ministry of Science and Innovation, Institute for Global Health, UK Medical Research Council, European Union's Horizon 2020 Project Exhaustion.


Assuntos
Avaliação do Impacto na Saúde , Temperatura Alta , Adulto , Humanos , Cidades , Temperatura Baixa , Estações do Ano
20.
Biostatistics ; 24(4): 1066-1084, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-35791751

RESUMO

In environmental epidemiology, there is wide interest in creating and using comprehensive indices that can summarize information from different environmental exposures while retaining strong predictive power on a target health outcome. In this context, the present article proposes a model called the constrained groupwise additive index model (CGAIM) to create easy-to-interpret indices predictive of a response variable, from a potentially large list of variables. The CGAIM considers groups of predictors that naturally belong together to yield meaningful indices. It also allows the addition of linear constraints on both the index weights and the form of their relationship with the response variable to represent prior assumptions or operational requirements. We propose an efficient algorithm to estimate the CGAIM, along with index selection and inference procedures. A simulation study shows that the proposed algorithm has good estimation performances, with low bias and variance and is applicable in complex situations with many correlated predictors. It also demonstrates important sensitivity and specificity in index selection, but non-negligible coverage error on constructed confidence intervals. The CGAIM is then illustrated in the construction of heat indices in a health warning system context. We believe the CGAIM could become useful in a wide variety of situations, such as warning systems establishment, and multipollutant or exposome studies.


Assuntos
Algoritmos , Exposição Ambiental , Humanos , Exposição Ambiental/efeitos adversos , Simulação por Computador , Viés
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA