Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 290(37): 22352-69, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26183782

RESUMO

Apoptosis plays an indispensable role in the maintenance and development of tissues. We have shown that receptor-mediated recognition of apoptotic target cells by viable kidney proximal tubular epithelial cells (PTECs) inhibits the proliferation and survival of PTECs. Here, we examined the effect of apoptotic targets on PTEC cell growth (cell size during G1 phase of the cell cycle). Using a cell culture model, we show that apoptotic cells potently activate AMP-activated protein kinase (AMPK), a highly sensitive sensor of intracellular energy stores. AMPK activation leads to decreased activity of its downstream target, ribosomal protein p70 S6 kinase (p70S6K), and concomitant inhibition of cell growth. Importantly, these events occur without detectable change in intracellular levels of AMP, ADP, or ATP. Inhibition of AMPK, either pharmacologically by compound C or molecularly by shRNA, diminishes the effects of apoptotic targets and largely restores p70S6K activity and cell size to normal levels. Apoptotic targets also inhibit Akt, a second signaling pathway regulating cell growth. Expression of a constitutively active Akt construct partially relieved cell growth inhibition but was less effective than inhibition of AMPK. Inhibition of cell growth by apoptotic targets is dependent on physical interaction between apoptotic targets and PTECs but independent of phagocytosis. We conclude that receptor-mediated recognition of apoptotic targets mimics the effects of intracellular energy depletion, activating AMPK and inhibiting cell growth. By acting as sentinels of environmental change, apoptotic death may enable nearby viable cells, especially nonmigratory epithelial cells, to monitor and adapt to local stresses.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/fisiologia , Proliferação de Células/fisiologia , Metabolismo Energético/fisiologia , Células Epiteliais/metabolismo , Túbulos Renais Proximais/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Nucleotídeos de Adenina/genética , Nucleotídeos de Adenina/metabolismo , Animais , Células Epiteliais/citologia , Túbulos Renais Proximais/citologia , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/fisiologia
2.
J Biol Chem ; 287(17): 13761-77, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22396534

RESUMO

Apoptosis allows for the removal of damaged, aged, and/or excess cells without harm to surrounding tissue. To accomplish this, cells undergoing apoptosis acquire new activities that enable them to modulate the fate and function of nearby cells. We have shown that receptor-mediated recognition of apoptotic versus necrotic target cells by viable kidney proximal tubular epithelial cells (PTEC) modulates the activity of several signaling pathways critically involved in regulation of proliferation and survival. Generally, apoptotic and necrotic targets have opposite effects with apoptotic targets inhibiting and necrotic targets stimulating the activity of these pathways. Here we explore the consequences of these signaling differences. We show that recognition of apoptotic targets induces a profound decrease in PTEC viability through increased responder cell death and decreased proliferation. In contrast, necrotic targets promote viability through decreased death and increased proliferation. Both target types mediate their effects through a network of Akt-dependent and -independent events. Apoptotic targets modulate Akt-dependent viability in part through a reduction in cellular ß-catenin and decreased inactivation of Bad. In contrast, Akt-independent modulation of viability occurs through activation of caspase-8, suggesting that death receptor-dependent pathways are involved. Apoptotic targets also activate p38, which partially protects responders from target-induced death. The response of epithelial cells varies depending on their tissue origin. Some cell lines, like PTEC, demonstrate decreased viability, whereas others (e.g. breast-derived) show increased viability. By acting as sentinels of environmental change, apoptotic targets allow neighboring cells, especially non-migratory epithelial cells, to monitor and potentially adapt to local stresses.


Assuntos
Apoptose , Células Epiteliais/imunologia , Regulação da Expressão Gênica , Animais , Células CHO , Proliferação de Células , Sobrevivência Celular , Cricetinae , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células HeLa , Homeostase , Humanos , Sistema Imunitário , Rim/metabolismo , Necrose , Fagócitos/citologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , beta Catenina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Curr Opin Immunol ; 16(3): 382-7, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15134789

RESUMO

The ability of B lymphocytes to capture, process and present antigens to T cells is requisite for normal humoral immune responses and contributes to the pathogenesis of both B- and T-cell-mediated autoimmune diseases. B lymphocytes preferentially capture polyvalent antigens, which are capable of eliciting a coordinated series of cellular responses that ensure that even low-affinity antigens are productively captured. Polyvalency not only accelerates transit through the endocytic pathway but also induces a reorganization of the antigen-processing compartment, activates degradative pathways and determines how antigenic peptides are presented to T cells. Similar changes are observed in maturing dendritic cells, indicating that some cellular responses to foreign antigens are conserved.


Assuntos
Apresentação de Antígeno/imunologia , Linfócitos B/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Linfócitos T/imunologia , Animais , Antígenos/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Linfócitos B/patologia , Células Dendríticas/imunologia , Humanos , Camundongos , Linfócitos T/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA