Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Exp Physiol ; 107(8): 933-945, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35478205

RESUMO

NEW FINDINGS: What is the central question of this study? We investigated the effects of intrathecal administration of a novel toxin, CTK 01512-2, in a mouse model of Huntington's disease. We asked whether spinal cord neurons can represent a therapeutic target, given that the spinal cord seems to be involved in motor symptoms of Huntington's disease. Pharmacological approaches focusing on the spinal cord and skeletal muscles might represent a more feasible strategy than a high-risk brain intervention. What is the main finding and its importance? We provided evidence of a novel, local, neuroprotective effect of CTK 01512-2, paving a path for the development of approaches to treat motor symptoms of Huntington's disease beyond the brain. ABSTRACT: Phα1ß is a neurotoxin from the venom of the Phoneutria nigriventer spider, available as CTK 01512-2, a recombinant peptide. Owing to its antinociceptive and analgesic properties, CTK 01512-2 has been described to alleviate neuroinflammatory responses. Despite the diverse actions of CTK 01512-2 on the nervous system, little is known regarding its neuroprotective effect, especially in neurodegenerative conditions such as Huntington's disease (HD), a genetic movement disorder without cure. Here, we investigated whether CTK 01512-2 has a neuroprotective effect in a mouse model of HD. We hypothesized that spinal cord neurons might represent a therapeutic target, because the spinal cord seems to be involved in the motor symptoms of HD (BACHD) mice. We treated BACHD mice with CTK 01512-2 by intrathecal injection and performed in vivo motor behavioural and morphological analyses in the CNS (brain and spinal cord) and muscles. Our data showed that intrathecal injection of CTK 01512-2 significantly improved motor performance in the open field task. CTK 01512-2 protected neurons in the spinal cord (but not in the brain) from death, suggesting a local effect. CTK 01512-2 exerted its neuroprotective effect by inhibiting BACHD neuronal apoptosis, as revealed by a reduction in caspase-3 in the spinal cord. CTK 01512-2 was also able to revert BACHD muscle atrophy. In conclusion, our data suggest a novel role for CTK 01512-2 acting directly in the spinal cord to ameliorate morphofunctional aspects of spinal cord neurons and muscles and improve the performance of BACHD mice in motor behavioural tests. Given that HD shares similar symptoms with many neurodegenerative conditions, the findings presented herein might also be applicable to other disorders.


Assuntos
Doença de Huntington , Fármacos Neuroprotetores , Animais , Modelos Animais de Doenças , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Camundongos , Camundongos Transgênicos , Neurônios , Fármacos Neuroprotetores/farmacologia , Medula Espinal
2.
Curr Med Chem ; 29(19): 3483-3498, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35125076

RESUMO

BACKGROUND AND OBJECTIVE: Stroke, a leading cause of mortality and disability, characterized by neuronal death, can be induced by a reduction or interruption of blood flow. In this study, the role of Alamandine, a new peptide of the renin-angiotensin system, was evaluated in in-vitro and in-vivo brain ischemia models. METHODS: In the in-vitro model, hippocampal slices from male C57/Bl6 mice were placed in a glucose-free aCSF solution and bubbled with 95% N2 and 5% CO2 to mimic brain ischemia. An Alamandine concentration-response curve was generated to evaluate cell damage, glutamatergic excitotoxicity, and cell death. In the in-vivo model, cerebral ischemia/ reperfusion was induced by bilateral occlusion of common carotid arteries (BCCAo-untreated) in SD rats. An intracerebroventricular injection of Alamandine was given 20-30 min before BCCAo. Animals were subjected to neurological tests 24 h and 72 h after BCCAo. Cytokine levels, oxidative stress markers, and immunofluorescence were assessed in the brain 72 h after BCCAo. RESULTS: Alamandine was able to protect brain slices from cellular damage, excitotoxicity and cell death. When the Alamandine receptor was blocked, protective effects were lost. ICV injection of Alamandine attenuated neurological deficits of animals subjected to BCCAo and reduced the number of apoptotic neurons/cells. Furthermore, Alamandine induced anti-inflammatory effects in BCCAo animals as shown by reductions in TNFα, IL- 1ß, IL-6, and antioxidant effects through attenuation of the decreased SOD, catalase, and GSH activities in the brain. CONCLUSION: This study showed, for the first time, a neuroprotective role for Alamandine in different ischemic stroke models.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Oligopeptídeos , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico
3.
Neurosci Lett ; 761: 136123, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34293418

RESUMO

BACKGROUND: Epilepsy is a disorder characterized by recurrent seizures that affects 1% of the population. However, the neurochemical alterations observed in epilepsy are not fully understood. There are different animal models of epilepsy, such as genetic or drug induced. In the present study, we utilize Wistar Audiogenic Rats (WAR), a murine strain that develops seizures in response to high intensity audio stimulation, in order to investigate abnormalities in glutamatergic and GABAergic systems. METHODS: Synaptosomes and glial plasmalemmal vesicles were prepared from hippocampus and cortex, respectively. Glutamate and GABA release and uptake were assayed by monitoring the fluorescence and using L-[3H]-radiolabeled compounds. Glutamate and calcium concentration in the synaptosomes were also measured. The expression of neuronal calcium sensor 1 (NCS-1) was determined by western blot. RESULTS: Glutamate and GABA release evoked by KCl was decreased in WAR compared to control Wistar rats. Calcium independent release was not considerably different in both groups. The total amount of glutamate of synaptosomes, as well as glutamate uptake by synaptosomes and GPV were also decreased in WAR in comparison with the controls. In addition, [Ca2+]i of hippocampal synaptosomes, as well as NCS-1 expression in the hippocampus, were increased in WAR in comparison with controls. CONCLUSION: In conclusion, our results suggest that WAR have important alterations in the glutamatergic and GABAergic pathways, as well as an increased expression of NCS-1 in the hippocampus and inferior colliculus. These alterations may be linked to the spreading of hyperexcitability and recruitment of various brain regions.


Assuntos
Hipocampo/metabolismo , Convulsões/metabolismo , Animais , Cálcio/metabolismo , Ácido Glutâmico/metabolismo , Masculino , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/metabolismo , Ratos , Ratos Wistar , Sinaptossomos/metabolismo , Ácido gama-Aminobutírico/metabolismo
4.
Neuropeptides ; 85: 102111, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33333486

RESUMO

Abnormal calcium influx and glutamatergic excitotoxicity have been extensively associated with neuronal death in Huntington's disease (HD), a genetic movement disorder. Currently, there is no effective treatment for this fatal condition. The neurotoxin Phα1ß has demonstrated therapeutic effects as a calcium channel blocker, for example during pain control. However, little is known about its neuroprotective effect in HD. Herein, we investigated if Phα1ß is effective in inhibiting neuronal cell death in the BACHD mouse model for HD. We performed intrastriatal injection of Phα1ß in WT and BACHD mice. No side effects or unusual behaviors were observed upon Phα1ß administration. Using three different motor behavior tests, we observed that injection of the toxin in BACHD mice greatly improved the animals' motor-force as seen in the Wire-hang test, and also the locomotor performance, according to the Open field test. NeuN labeling for mature neuron detection revealed that Phα1ß toxin promoted neuronal preservation in the striatum and cortex, when injected locally. Intrastriatal injection of Phα1ß was not able to preserve neurons from the spinal cord and also not revert muscle atrophy in BACHD mice. Finally, we observed that Phα1ß might, at least in part, exert its protective effect by decreasing L-glutamate, measured in cerebrospinal fluid. Our data provide evidence of a novel neuroprotector effect of Phα1ß, paving a path for the development of new approaches to treat HD motor symptoms.


Assuntos
Doença de Huntington/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Venenos de Aranha/administração & dosagem , Animais , Modelos Animais de Doenças , Ácido Glutâmico/metabolismo , Doença de Huntington/patologia , Camundongos , Camundongos Transgênicos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Neurônios/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia
5.
ASN Neuro ; 12: 1759091420961612, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32967452

RESUMO

Acetylcholine (ACh) has been suggested to facilitate plasticity and improve functional recovery after different types of brain lesions. Interestingly, numerous studies have shown that striatal cholinergic interneurons are relatively resistant to acute ischemic insults, but whether ACh released by these neurons enhances functional recovery after stroke is unknown. We investigated the role of endogenous striatal ACh in stroke lesion volume and functional outcomes following middle cerebral artery occlusion to induce focal ischemia in striatum-selective vesicular acetylcholine transporter-deficient mice (stVAChT-KO). As transporter expression is almost completely eliminated in the striatum of stVAChT-KO mice, ACh release is nearly abolished in this area. Conversely, in other brain areas, VAChT expression and ACh release are preserved. Our results demonstrate a larger infarct size after ischemic insult in stVAChT-KO mice, with more pronounced functional impairments and increased mortality than in littermate controls. These changes are associated with increased activation of GSK-3, decreased levels of ß-catenin, and a higher permeability of the blood-brain barrier in mice with loss of VAChT in striatum neurons. These results support a framework in which endogenous ACh secretion originating from cholinergic interneurons in the striatum helps to protect brain tissue against ischemia-induced damage and facilitates brain recovery by supporting blood-brain barrier function.


Assuntos
Acetilcolina/metabolismo , Corpo Estriado/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Acidente Vascular Cerebral/metabolismo , Acetilcolina/genética , Animais , Corpo Estriado/patologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/patologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia , Proteínas Vesiculares de Transporte de Acetilcolina/deficiência , Proteínas Vesiculares de Transporte de Acetilcolina/genética
6.
Brain Res Bull ; 152: 246-256, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31323280

RESUMO

Stroke is one of the leading causes of mortality and morbidity worldwide. Due to its poor prognosis, there is a major negative impact on the patients and their family's life quality. However, despite the severity of this pathology tissue plasminogen activator (tPA) is the only FDA approved treatment for ischemic stroke. Moreover, there is no effective treatment for hemorrhagic stroke and only some palliative procedures are often performed to improve the patient's quality of life. Considering this, nanotechnology can offer some advantages for the development of new therapies for stroke. Among the various types of nanomaterials, liposomes are the most extensively studied due to their biocompatibility, biodegradability, and low toxicity. Liposomes, as a drug delivery system, are able to mask therapeutic compounds and allow their passage through the blood-brain barrier. Liposomes also protect drugs from degradation in a biological environment, increasing the circulation time and accumulation in the target tissue. Hence, this review highlights the potential of liposomes applications for delivery of therapeutic compounds for treating stroke.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Lipossomos/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Modelos Animais de Doenças , Humanos , Lipossomos/metabolismo , Qualidade de Vida , Ativador de Plasminogênio Tecidual/farmacologia
7.
Acta Biomater ; 80: 66-84, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30232030

RESUMO

The brain is considered to have a limited capacity to repair damaged tissue and no regenerative capacity following injury. Tissue lost after a stroke is therefore not spontaneously replaced. Extracellular matrix (ECM)-based hydrogels implanted into the stroke cavity can attract endogenous cells. These hydrogels can be formulated at different protein concentrations that govern their rheological and inductive properties. We evaluated histologically 0, 3, 4 and 8 mg/mL of porcine-derived urinary bladder matrix (UBM)-ECM hydrogel concentrations implanted in a 14-day old stroke cavity. Less concentrated hydrogels (3 and 4 mg/mL) were efficiently degraded with a 95% decrease in volume by 90 days, whereas only 32% of the more concentrated and stiffer hydrogel (8 mg/mL) was resorbed. Macrophage infiltration and density within the bioscaffold progressively increased in the less concentrated hydrogels and decreased in the 8 mg/mL hydrogels. The less concentrated hydrogels showed a robust invasion of endothelial cells with neovascularization. No neovascularization occurred with the stiffer hydrogel. Invasion of neural cells increased with time in all hydrogel concentrations. Differentiation of neural progenitors into mature neurons with axonal projections was evident, as well as a robust invasion of oligodendrocytes. However, relatively few astrocytes were present in the ECM hydrogel, although some were present in the newly forming tissue between degrading scaffold patches. Implantation of an ECM hydrogel partially induced neural tissue restoration, but a more complete understanding is required to evaluate its potential therapeutic application. STATEMENT OF SIGNIFICANCE: Extracellular matrix hydrogel promotes tissue regeneration in many peripheral soft tissues. However, the brain has generally been considered to lack the potential for tissue regeneration. We here demonstrate that tissue regeneration in the brain can be achieved using implantation of ECM hydrogel into a tissue cavity. A structure-function relationship is key to promote tissue regeneration in the brain. Specifically, weaker hydrogels that were retained in the cavity underwent an efficient biodegradation within 14 days post-implantation to promote a tissue restoration within the lesion cavity. In contrast, stiffer ECM hydrogel only underwent minor biodegradation and did not lead to a tissue restoration. Inductive hydrogels weaker than brain tissue provide the appropriate condition to promote an endogenous regenerative response that restores tissue in a cavity. This approach offers new avenues for the future treatment of chronic tissue damage caused by stroke and other acute brain injuries.


Assuntos
Encéfalo/patologia , Matriz Extracelular/metabolismo , Hidrogéis/metabolismo , Acidente Vascular Cerebral/patologia , Animais , Contagem de Células , Cicatriz/patologia , Modelos Animais de Doenças , Gliose/patologia , Macrófagos/metabolismo , Masculino , Neovascularização Fisiológica , Neuroglia/patologia , Neurônios/metabolismo , Fenótipo , Implantação de Prótese , Ratos Sprague-Dawley , Alicerces Teciduais/química
8.
Front Neurosci ; 12: 453, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30026685

RESUMO

The complexity of the central nervous system (CNS), its limited self-repairing capacity and the ineffective delivery of most CNS drugs to the brain contribute to the irreversible and progressive nature of many neurological diseases and also the severity of the outcome. Therefore, neurological disorders belong to the group of pathologies with the greatest need of new technologies for diagnostics and therapeutics. In this scenario, nanotechnology has emerged with innovative and promising biomaterials and tools. This review focuses on ischemic stroke, being one of the major causes of death and serious long-term disabilities worldwide, and the recent advances in the study of liposomes and carbon nanomaterials for therapeutic and diagnostic purposes. Ischemic stroke occurs when blood flow to the brain is insufficient to meet metabolic demand, leading to a cascade of physiopathological events in the CNS including local blood brain barrier (BBB) disruption. However, to date, the only treatment approved by the FDA for this pathology is based on the potentially toxic tissue plasminogen activator. The techniques currently available for diagnosis of stroke also lack sensitivity. Liposomes and carbon nanomaterials were selected for comparison in this review, because of their very distinct characteristics and ranges of applications. Liposomes represent a biomimetic system, with composition, structural organization and properties very similar to biological membranes. On the other hand, carbon nanomaterials, which are not naturally encountered in the human body, exhibit new modes of interaction with biological molecules and systems, resulting in unique pharmacological properties. In the last years, several neuroprotective agents have been evaluated under the encapsulated form in liposomes, in experimental models of stroke. Effective drug delivery to the brain and neuroprotection were achieved using stealth liposomes bearing targeting ligands onto their surface for brain endothelial cells and ischemic tissues receptors. Carbon nanomaterials including nanotubes, fullerenes and graphene, started to be investigated and potential applications for therapy, biosensing and imaging have been identified based on their antioxidant action, their intrinsic photoluminescence, their ability to cross the BBB, transitorily decrease the BBB paracellular tightness, carry oligonucleotides and cells and induce cell differentiation. The potential future developments in the field are finally discussed.

9.
Physiol Behav ; 184: 6-11, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29111230

RESUMO

Although High Intensity Interval Training (HIIT) are being associated to increase cardiovascular and metabolic adaptation, there is controversy and limited information about the effects of HIIT on hippocampal oxidative stress, pro- and anti-inflammatory cytokines balance and neurotrophic status. Thus, this study evaluated the effects of six weeks of HIIT on hippocampal redox state (oxidative damage and enzymatic and non-enzymatic antioxidant defenses), neuroimmune mediators (TNFα, IL-6, IL-1ß and IL-10) and brain-derived neurotrophic (BDNF) levels. After six weeks of HIIT young adults male Wistar rats presented reduced oxidative damage and increased enzymatic (superoxide dismutase) and non-enzymatic activity in hippocampus. Moreover HIIT induced a decrease in cytokine content (TNFα, IL-6, IL-1ß and IL-10) and enhanced hippocampal BDNF levels. In conclusion, the present study showed for the first time a positive effect of six weeks of HIIT on reducing hippocampal oxidative stress by decreasing lipoperoxidation and inflammatory markers, as well enhancing antioxidant defenses and BDNF content.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Citocinas/metabolismo , Treinamento Intervalado de Alta Intensidade , Hipocampo/fisiologia , Homeostase/fisiologia , Estresse Oxidativo/fisiologia , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/fisiologia , Masculino , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Fatores de Tempo
10.
Biomaterials ; 91: 166-181, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27031811

RESUMO

Brain tissue loss following stroke is irreversible with current treatment modalities. The use of an acellular extracellular matrix (ECM), formulated to produce a hydrogel in situ within the cavity formed by a stroke, was investigated as a method to replace necrotic debris and promote the infiltration of host brain cells. Based on magnetic resonance imaging measurements of lesion location and volume, different concentrations of ECM (0, 1, 2, 3, 4, 8 mg/mL) were injected at a volume equal to that of the cavity (14 days post-stroke). Retention of ECM within the cavity occurred at concentrations >3 mg/mL. A significant cell infiltration into the ECM material in the lesion cavity occurred with an average of ∼36,000 cells in the 8 mg/mL concentration within 24 h. An infiltration of cells with distances of >1500 µm into the ECM hydrogel was observed, but the majority of cells were at the tissue/hydrogel boundary. Cells were typically of a microglia, macrophage, or neural and oligodendrocyte progenitor phenotype. At the 8 mg/mL concentration, ∼60% of infiltrating cells were brain-derived phenotypes and 30% being infiltrating peripheral macrophages, polarizing toward an M2-like anti-inflammatory phenotype. These results suggest that an 8 mg/mL ECM concentration promotes a significant acute endogenous repair response that could potentially be exploited to treat stroke.


Assuntos
Encéfalo/citologia , Encéfalo/patologia , Matriz Extracelular/química , Matriz Extracelular/transplante , Infarto da Artéria Cerebral Média/terapia , Alicerces Teciduais/química , Animais , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/uso terapêutico , Infarto da Artéria Cerebral Média/patologia , Macrófagos/patologia , Masculino , Microglia/patologia , Ratos Sprague-Dawley , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/terapia , Suínos
11.
Acta Biomater ; 27: 116-130, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26318805

RESUMO

Biomaterials composed of mammalian extracellular matrix (ECM) promote constructive tissue remodeling with minimal scar tissue formation in many anatomical sites. However, the optimal shape and form of ECM scaffold for each clinical application can vary markedly. ECM hydrogels have been shown to promote chemotaxis and differentiation of neuronal stem cells, but minimally invasive delivery of such scaffold materials to the central nervous system (CNS) would require an injectable form. These ECM materials can be manufactured to exist in fluid phase at room temperature, while forming hydrogels at body temperature in a concentration-dependent fashion. Implantation into the lesion cavity after a stroke could hence provide a means to support endogenous repair mechanisms. Herein, we characterize the rheological properties of an ECM hydrogel composed of urinary bladder matrix (UBM) that influence its delivery and in vivo interaction with host tissue. There was a notable concentration-dependence in viscosity, stiffness, and elasticity; all characteristics important for minimally invasive intracerebral delivery. An efficient MRI-guided injection with drainage of fluid from the cavity is described to assess in situ hydrogel formation and ECM retention at different concentrations (0, 1, 2, 3, 4, and 8mg/mL). Only ECM concentrations >3mg/mL gelled within the stroke cavity. Lower concentrations were not retained within the cavity, but extensive permeation of the liquid phase ECM into the peri-infarct area was evident. The concentration of ECM hydrogel is hence an important factor affecting gelation, host-biomaterial interface, as well intra-lesion distribution. STATEMENT OF SIGNIFICANCE: Extracellular matrix (ECM) hydrogel promotes constructive tissue remodeling in many tissues. Minimally invasive delivery of such scaffold materials to the central nervous system (CNS) would require an injectable form that exists in fluid phase at room temperature, while forming hydrogels at body temperature in a concentration-dependent fashion. We here report the rheological characterization of an injectable ECM hydrogel and its concentration-dependent delivery into a lesion cavity formed after a stroke based on MRI-guidance. The concentration of ECM determined its retention within the cavity or permeation into tissue and hence influenced its interaction with the host brain. This study demonstrates the importance of understanding the structure-function relationship of biomaterials to guide particular clinical applications.


Assuntos
Matriz Extracelular/química , Hidrogéis/administração & dosagem , Hidrogéis/química , Infarto da Artéria Cerebral Média/tratamento farmacológico , Bexiga Urinária/química , Animais , Relação Dose-Resposta a Droga , Hemostáticos/administração & dosagem , Hemostáticos/química , Infarto da Artéria Cerebral Média/patologia , Masculino , Teste de Materiais , Transição de Fase , Ratos Sprague-Dawley , Resistência ao Cisalhamento , Suínos , Resultado do Tratamento , Viscosidade
12.
Psychoneuroendocrinology ; 57: 14-25, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25867995

RESUMO

It is well known that estradiol (E2) replacement therapy is effective on restoring memory deficits and mood disorders that may occur during natural menopause or after surgical ovarian removal (ovariectomy, OVX). However, it is still unknown the effectiveness of acute and localized E2 administration on the effects of chronic OVX. Here we tested the hypothesis that the intra-hippocampal E2 infusion, as well as specific agonists of estrogen receptors (ERs) alpha (ERα) and beta (ERß), are able to mend novel object recognition (NOR) memory deficit and depressive-like behavior caused by 12 weeks of OVX. We found that both ERα and ERß activation, at earlier stages of consolidation, recovered the NOR memory deficit caused by 12 w of OVX. Conversely, only the ERß activation was effective in decreasing the depressive-like behavior caused by 12 w of OVX. Furthermore, we investigated the effect of OVX on hippocampal volume and ERs expression. The structural MRI showed no alteration in the hippocampus volume of 12 w OVX animals. Interestingly, ERα expression in the hippocampus decreased after one week of OVX, but increased in 12 w OVX animals. Overall, we may conclude that the chronic estrogen deprivation, induced by 12 weeks of OVX, modulates the hippocampal ERα expression and induces NOR memory deficit and depressive-like behaviors. Nonetheless, it is noteworthy that the acute effects of E2 on NOR memory and depressive-like behavior are still apparent even after 12 weeks of OVX.


Assuntos
Depressão/etiologia , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Hipocampo/metabolismo , Transtornos da Memória/etiologia , Ovariectomia/efeitos adversos , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Feminino , Hipocampo/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais
13.
Hippocampus ; 24(2): 239-48, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24123782

RESUMO

Social memory consists of the information necessary to identify and recognize cospecifics and is essential to many forms of social interaction. Social memory persistence is strongly modulated by the animal's experiences. We have shown in previous studies that social isolation (SI) in adulthood impairs social memory persistence and that an enriched environment (EE) prevents this impairment. However, the mechanisms involved in the effects of SI and EE on social memory persistence remain unknown. We hypothesized that the mechanism by which SI and EE affect social memory persistence is through their modulation of neurogenesis. To investigate this hypothesis, adult mice were submitted to 7 days of one of the following conditions: group-housing in a standard (GH) or enriched environment (GH+EE); social isolation in standard (SI) or enriched environment (SI+EE). We observed an increase in the number of newborn neurons in the dentate gyrus of the hippocampus (DG) and glomerular layer of the olfactory bulb (OB) in both GH+EE and SI+EE mice. However, this increase of newborn neurons in the granule cell layer of the OB was restricted to the GH+EE group. Furthermore, both SI and SI+EE groups showed less neurogenesis in the mitral layer of the OB. Interestingly, the performance of the SI mice in the buried food-finding task was inferior to that of the GH mice. To further analyze whether increased neurogenesis is in fact the mechanism by which the EE improves social memory persistence in SI mice, we administered the mitotic inhibitor AraC or saline directly into the lateral ventricles of the SI+EE mice. We found that the AraC treatment decreased cell proliferation in both the DG and OB, and impaired social memory persistence in the SI+EE mice. Taken together, our results strongly suggest that neurogenesis is what supports social memory persistence in socially isolated mice.


Assuntos
Meio Ambiente , Hipocampo/citologia , Neurogênese/fisiologia , Neurônios/fisiologia , Isolamento Social/psicologia , Fatores Etários , Animais , Bromodesoxiuridina , Proliferação de Células/efeitos dos fármacos , Citarabina/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Imunossupressores/farmacologia , Masculino , Aprendizagem em Labirinto , Camundongos , Neurogênese/efeitos dos fármacos , Fosfopiruvato Hidratase/metabolismo , Reconhecimento Psicológico
14.
Hippocampus ; 24(1): 79-88, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24115292

RESUMO

It is well known that physical exercise has positive effects on cognitive functions and hippocampal plasticity. However, the underlying mechanisms have remained to be further investigated. Here we investigated the hypothesis that the memory-enhancement promoted by physical exercise relies on facilitation of the endocannabinoid system. We observed that the spatial memory tested in the object location paradigm did not persist in sedentary mice, but could be improved by 1 week of treadmill running. In addition, exercise up-regulated CB1 receptor and BDNF expression in the hippocampus. To verify if these changes required CB1 activation, we treated the mice with the selective antagonist, AM251, before each period of physical activity. In line with our hypothesis, this drug prevented the exercise-induced memory enhancement and BDNF expression. Furthermore, AM251 reduced CB1 expression. To test if facilitating the endocannabinoid system signaling would mimic the alterations observed after exercise, we treated sedentary animals during 1 week with the anandamide-hydrolysis inhibitor, URB597. Mice treated with this drug recognized the object in a new location and have increased levels of CB1 and BDNF expression in the hippocampus, showing that potentiating the endocanabinoid system equally benefits memory. In conclusion, the favorable effects of exercise upon spatial memory and BDNF expression depend on facilitation of CB1 receptor signaling, which can be mimic by inhibition of anandamide hydrolysis in sedentary animals. Our results suggest that, at least in part, the promnesic effect of the exercise is dependent of CB1 receptor activation and is mediated by BDNF.


Assuntos
Hipocampo/metabolismo , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Condicionamento Físico Animal/fisiologia , Receptor CB1 de Canabinoide/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Moduladores de Receptores de Canabinoides/farmacologia , Endocanabinoides/metabolismo , Masculino , Camundongos
15.
FASEB J ; 27(9): 3594-607, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23729591

RESUMO

Stress-inducible phosphoprotein 1 (STI1) is part of the chaperone machinery, but it also functions as an extracellular ligand for the prion protein. However, the physiological relevance of these STI1 activities in vivo is unknown. Here, we show that in the absence of embryonic STI1, several Hsp90 client proteins are decreased by 50%, although Hsp90 levels are unaffected. Mutant STI1 mice showed increased caspase-3 activation and 50% impairment in cellular proliferation. Moreover, placental disruption and lack of cellular viability were linked to embryonic death by E10.5 in STI1-mutant mice. Rescue of embryonic lethality in these mutants, by transgenic expression of the STI1 gene, supported a unique role for STI1 during embryonic development. The response of STI1 haploinsufficient mice to cellular stress seemed compromised, and mutant mice showed increased vulnerability to ischemic insult. At the cellular level, ischemia increased the secretion of STI1 from wild-type astrocytes by 3-fold, whereas STI1 haploinsufficient mice secreted half as much STI1. Interesting, extracellular STI1 prevented ischemia-mediated neuronal death in a prion protein-dependent way. Our study reveals essential roles for intracellular and extracellular STI1 in cellular resilience.


Assuntos
Embrião de Mamíferos/metabolismo , Proteínas de Choque Térmico/metabolismo , Isquemia/metabolismo , Chaperonas Moleculares/metabolismo , Príons/metabolismo , Animais , Blastocisto/metabolismo , Western Blotting , Fator de Transcrição CDX2 , Células Cultivadas , Feminino , Proteínas de Choque Térmico/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Técnicas In Vitro , Isquemia/genética , Camundongos , Camundongos Mutantes , Chaperonas Moleculares/genética , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Gravidez , Príons/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Neurobiol Learn Mem ; 101: 19-25, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23298786

RESUMO

The critical window hypothesis predicts that estrogen replacement therapy (ERT) must be administered early on the menopause or ovariectomy (OVX) to positively affect cognition. However, the neural substrates, underling the time dependent efficacy of ERT, are still not completely known. In order to address this issue, we submitted female mice to 12 weeks of OVX followed by 5 weeks of chronic ERT (OVX(E2)). Within the first 12 weeks, the OVX animals showed a progressive compromised performance in the object recognition memory (ORM) task. After ERT, OVXE2 mice, but not the control group (OVXoil), were able to recognize the new object in the test session. Further, we evaluated the c-Fos expression in hippocampus, perirhinal cortex (PC) and central amygdala (CeA) of OVXoil and OVX(E2) mice, after context exposure (CTX) or object exploration (OBJ). We observed that ERT increased c-Fos expression unspecifically for CTX and OBJ. In addition, only the OVX(E2) group showed significantly higher c-Fos expression in the PC and CeA after object exploration. Thus, our results showed that delayed chronic ERT improves ORM (compromised by OVX) and increases constitutive c-Fos expression in temporal lobe regions. Furthermore, we showed for the first time that PC and CeA, but not the hippocampus, present a distinct pattern of activation in response to object exploration in ovariectomized females that underwent delayed-ERT.


Assuntos
Encéfalo/efeitos dos fármacos , Estradiol/farmacologia , Terapia de Reposição de Estrogênios/métodos , Estrogênios/farmacologia , Menopausa/fisiologia , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Encéfalo/metabolismo , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Menopausa/efeitos dos fármacos , Menopausa/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ovariectomia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Lobo Temporal/efeitos dos fármacos , Lobo Temporal/metabolismo , Fatores de Tempo
17.
J Neurochem ; 123(2): 317-24, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22913494

RESUMO

Although it is well known that regular exercise may promote neuroprotection, the mechanisms underlying this effect are still not fully understood. We investigated if swim training promotes neuroprotection by potentiating antioxidant pathways, thereby decreasing the effects of oxidative stress on glutamate and nitric oxide release. Male Wistar rats (n=36) were evenly randomized into a trained group (TRA) (5 days/week, 8 weeks, 30 min) and a sedentary group (SED). Forty-eight hours after the last session of exercise, animals were killed and brain was collected for in vitro ischemia. Cortical slices were divided into two groups: a group in which oxidative stress was induced by oxygen and glucose deprivation (OGD), and a group of non-deprived controls (nOGD). Interestingly, exercise by itself increased superoxide dismutase activity (nOGD, SED vs. TRA animals) with no effect on pro-oxidative markers. In fact, TRA-OGD slices showed lowered levels of lactate dehydrogenase when compared with SED-OGD controls, reinforcing the idea that exercise affords a neuroprotective effect. We also demonstrated that exercise decreased glutamate and nitrite release as well as lipid membrane damage in the OGD cortical slices. Our data suggest that under conditions of metabolic stress, swim training prevents oxidative damage caused by glutamate and nitric oxide release.


Assuntos
Córtex Cerebral/metabolismo , Glucose/metabolismo , Estresse Oxidativo/fisiologia , Oxigênio/metabolismo , Condicionamento Físico Animal/fisiologia , Natação/fisiologia , Animais , Hipóxia Celular/fisiologia , Córtex Cerebral/patologia , Glucose/deficiência , Masculino , Técnicas de Cultura de Órgãos , Condicionamento Físico Animal/métodos , Ratos , Ratos Wistar
18.
J Neurosci ; 28(26): 6691-702, 2008 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-18579743

RESUMO

The secreted cochaperone STI1 triggers activation of protein kinase A (PKA) and ERK1/2 signaling by interacting with the cellular prion (PrP(C)) at the cell surface, resulting in neuroprotection and increased neuritogenesis. Here, we investigated whether STI1 triggers PrP(C) trafficking and tested whether this process controls PrP(C)-dependent signaling. We found that STI1, but not a STI1 mutant unable to bind PrP(C), induced PrP(C) endocytosis. STI1-induced signaling did not occur in cells devoid of endogenous PrP(C); however, heterologous expression of PrP(C) reconstituted both PKA and ERK1/2 activation. In contrast, a PrP(C) mutant lacking endocytic activity was unable to promote ERK1/2 activation induced by STI1, whereas it reconstituted PKA activity in the same condition, suggesting a key role of endocytosis in the former process. The activation of ERK1/2 by STI1 was transient and appeared to depend on the interaction of the two proteins at the cell surface or shortly after internalization. Moreover, inhibition of dynamin activity by expression of a dominant-negative mutant caused the accumulation and colocalization of these proteins at the plasma membrane, suggesting that both proteins use a dynamin-dependent internalization pathway. These results show that PrP(C) endocytosis is a necessary step to modulate STI1-dependent ERK1/2 signaling involved in neuritogenesis.


Assuntos
Encéfalo/metabolismo , Endocitose/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Choque Térmico/metabolismo , Neurônios/metabolismo , Proteínas PrPC/metabolismo , Animais , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dinaminas/metabolismo , Ativação Enzimática/fisiologia , Proteínas de Choque Térmico/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Técnicas de Cultura de Órgãos , Proteínas PrPC/genética , Transporte Proteico/fisiologia
19.
Cell Mol Neurobiol ; 28(6): 847-56, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18196453

RESUMO

In the present study, the neuroprotective effect of blockers of voltage-dependent calcium channels (VDCC) and intracellular calcium stores on retinal ischemic damage induced by oxygen deprivation-low glucose insult (ODLG) was investigated. Retinal damage induced by ODLG was dependent on the calcium concentration in the perfusion medium. When incubated in medium containing 2.4 mM CaCl(2), cell death in ischemic retinal slices treated with blockers of VDCC, omega-conotoxin GVIA (1.0 microM), omega-conotoxin MVIIC (100 nM) and nifedipine (1.0 microM), was reduced to 62 +/- 2.3, 46 +/- 4.3 and 47 +/- 3.9%, respectively. In the presence of blockers of intracellular calcium stores, dantrolene (100 microM) and 2-APB (100 microM), the cell death was reduced to 46 +/- 3.2 and 55 +/- 2.9%, respectively. Tetrodotoxin (1.0 microM), reducing the extent of the membrane depolarization reduces the magnitude of calcium influx trough VDCC causing a reduction of the cell death to 55 +/- 4.3. Lactate dehydrogenase content of untreated ischemic retinal slices was reduced by 37% and treatment of ischemic slices with BAPTA-AM (100 microM) or 2-APB (100 microM) abolished the leakage of LDH. Dantrolene (100 microM) and nifedipine (1.0 microM) partially blocked the induced reduction on the LDH content of retinal ischemic slices. Histological analysis of retinal ischemic slices showed 40% reduction of ganglion cells that was prevented by BAPTA-AM or dantrolene. 2-APB partially blocked this reduction whilst nifedipine had no effect, p > 0.95. Conclusion Blockers of VDCC and intracellular calcium-sensitive receptors exert neuroprotective effect on retinal ischemia.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Cálcio/metabolismo , Isquemia/prevenção & controle , Retina/efeitos dos fármacos , Vasos Retinianos/efeitos dos fármacos , Animais , Quelantes/farmacologia , Glucose/deficiência , Técnicas In Vitro , Espaço Intracelular/metabolismo , Isquemia/metabolismo , Isquemia/patologia , Microscopia Confocal , Oxigênio/fisiologia , Ratos , Ratos Wistar , Retina/metabolismo , Retina/patologia
20.
Neurochem Int ; 49(5): 543-7, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16759753

RESUMO

The role of calcium channels blockers in ischemic condition has been well documented. The PhTx3 neurotoxic fraction of the spider Phoneutria nigriventer venom is a broad-spectrum calcium channel blocker that inhibits glutamate release, calcium uptake and also glutamate uptake in synaptosomes. In the present study we describe the effect of PhTx3 (1.0 microg/mL), omega-conotoxin GVIA (1.0 micromol/L) and omega-conotoxin MVIIC (100 nmol/L) on neuroprotection of hippocampal slices and SN56 cells subjected to ischemia by oxygen deprivation and low glucose insult (ODLG). After the insult, cell viability in the slices and SN56 cells was assessed by confocal microscopy and epifluorescence, using live/dead kit containing calcein-AM and ethidium homodimer. Confocal images of CA1 region of the rat hippocampal slices subjected to ischemia insult and treated with omega-conotoxin GVIA, omega-conotoxin MVIIC and PhTx3 showed a percentage of dead cells of 68%, 54% and 18%, respectively. The SN56 cells subjected to ischemia were almost completely protected from damage by PhTx3 while with omega-conotoxin GVIA or omega-conotoxin MVIIC the cell protection was only partial. Thus, PhTx3 provided robust ischemic neuroprotection showing potential as a novel class of agents that targets multiple components and exerts neuroprotection in in vitro model of brain ischemia.


Assuntos
Lesões Encefálicas/prevenção & controle , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Neurotoxinas/farmacologia , Aranhas/química , Animais , Hipocampo/patologia , Técnicas In Vitro , Microscopia Confocal , Microscopia de Fluorescência , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA