Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38005644

RESUMO

Understanding and monitoring the ecological quality of coastal waters is crucial for preserving marine ecosystems. Eutrophication is one of the major problems affecting the ecological state of coastal marine waters. For this reason, the control of the trophic conditions of aquatic ecosystems is needed for the evaluation of their ecological quality. This study leverages space-based Sentinel-3 Ocean and Land Color Instrument imagery (OLCI) to assess the ecological quality of Mediterranean coastal waters using the Trophic Index (TRIX) key indicator. In particular, we explore the feasibility of coupling remote sensing and machine learning techniques to estimate the TRIX levels in the Ligurian, Tyrrhenian, and Ionian coastal regions of Italy. Our research reveals distinct geographical patterns in TRIX values across the study area, with some regions exhibiting eutrophic conditions near estuaries and others showing oligotrophic characteristics. We employ the Random Forest Regression algorithm, optimizing calibration parameters to predict TRIX levels. Feature importance analysis highlights the significance of latitude, longitude, and specific spectral bands in TRIX prediction. A final statistical assessment validates our model's performance, demonstrating a moderate level of error (MAE of 0.51) and explanatory power (R2 of 0.37). These results highlight the potential of Sentinel-3 OLCI imagery in assessing ecological quality, contributing to our understanding of coastal water ecology. They also underscore the importance of merging remote sensing and machine learning in environmental monitoring and management. Future research should refine methodologies and expand datasets to enhance TRIX monitoring capabilities from space.

2.
J Plant Physiol ; 245: 153095, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31877472

RESUMO

Previous work showed in tomato plants harbouring the Agrobacterium rhizogenes rolB gene overexpression of genes involved in chloroplast function and stress response, significant increase in non-photochemical quenching and chlorophyll a and b content, and reduced chlorophyll a/b ratio. The latter condition being typical of plant shade where far-red is dominant, suggested a role for rolB in improving photosynthesis in such condition. To gain a better insight into these results, the photosynthetic performance of transgenic and control plants was compared by means of variable fluorescence kinetics with a WATER-PAM chlorophyll fluorometer, after 6 days-exposure to white light and to a far-red-enriched light source. Photosynthetic parameters analysed were quantum yield of photosystem II photochemistry Y(II); qL, corresponding to the fraction of open PSII reaction centers in a "lake" model of photosystem II; non-photochemical quenching and Y(NO), describing, respectively, regulated and non-regulated pathways for dissipation of excess energy. Chlorophyll a and b content was also analysed by HPLC. Finally, real-time PCR was performed to quantify the expression level of some of the chloroplast-related genes already shown to be overexpressed in transgenic plants. Quantum yield of photosystem II photochemistry decreased with increasing light intensity, showing no significant differences in both plant genotypes and light regimen. qL, on the other hand, was significantly higher at low PAR intensities, in particular in FR-treated transgenic plants. Fate of remaining light energy, channelled into regulated or non-regulated dissipation pathways, was different in transgenic and control plants, indicating a higher capability for protection from photodamage in rolB plants, particularly after exposure to far-red-enriched light. Chlorophyll a/b ratio was also decreased in transgenic plants under far-red-enriched light with respect to white light. Finally, qPCR showed that the expression of genes encoding small heat shock protein, chlorophyll a/b binding protein and carbonic anhydrase was significantly induced by far-red-enriched condition. Taken together, these data suggest the involvement of rolB in photosynthesis modulation under far-red-rich light in tomato.


Assuntos
Agrobacterium/genética , Proteínas de Bactérias/metabolismo , Clorofila A/metabolismo , Clorofila/metabolismo , Fotossíntese/efeitos da radiação , Plantas Geneticamente Modificadas/metabolismo , Solanum lycopersicum/metabolismo , beta-Glucosidase/metabolismo , Proteínas de Bactérias/genética , Clorofila/análise , Clorofila A/análise , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Choque Térmico Pequenas/genética , Proteínas de Choque Térmico Pequenas/metabolismo , Luz , Solanum lycopersicum/genética , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , beta-Glucosidase/genética
3.
Appl Opt ; 56(14): 3952-3968, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29047522

RESUMO

According to recommendations of the international community of phytoplankton functional type algorithm developers, a set of experiments on marine algal cultures was conducted to (1) investigate uncertainties and limits in phytoplankton group discrimination from hyperspectral light absorption properties of assemblages with mixed taxonomic composition, and (2) evaluate the extent to which modifications of the absorption spectral features due to variable light conditions affect the optical discrimination of phytoplankton. Results showed that spectral absorption signatures of multiple species can be extracted from mixed assemblages, even at low relative contributions. Errors in retrieved pigment abundances are, however, influenced by the co-occurrence of species with similar spectral features. Plasticity of absorption spectra due to changes in light conditions weakly affects interspecific differences, with errors <21% for retrievals of pigment concentrations from mixed assemblages.


Assuntos
Algoritmos , Luz , Fitoplâncton/classificação , Pigmentos Biológicos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA