Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecotoxicology ; 32(3): 321-335, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36930439

RESUMO

The hyporheic zone, i.e. the water-saturated sediment beneath and alongside the riverbed, is exposed to multiple stressors. Agricultural-watershed rivers are frequently exposed to two concomitant stressors: clogging and copper contamination. However, one stressor exposure can increase sensitivity to a second stressor. The aim of this study was to experimentally test the cumulative effects of these two stressors on copper distribution and structural and functional microbial communities responses in the hyporheic zone. A slow filtration column experiment was conducted to compare the effects of 3 treatments of increasing complexity: 'Reference', 'Copper-contaminated' (dissolved copper added at 191 µg L-1), and 'Clogging+Copper' (dissolved copper + addition of 2 cm of fine sediment). Microbial community structure and activities were studied at 4 column sediment depths. The results showed that clogging did not modify the distribution of copper, which remained fixed in the first few centimetres. In the first few centimetres, clogging had a stimulating effect on microbial activities whereas copper had limited effects mainly on leucine aminopeptidase activity and microbial community tolerance to copper. The subsurface zone thus hosts significant different microbial communities from the communities in the deeper zones that were protected from surface stressors. This experiment confirms the valuable filtering role played by the hyporheic zone and shows that microbial responses are strongly correlated to microhabitat-scale physicochemical conditions in sediment.


Assuntos
Cobre , Microbiota , Cobre/toxicidade , Rios/química , Água , Filtração , Sedimentos Geológicos/química
2.
Sci Total Environ ; 872: 162104, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36775149

RESUMO

Diffuse and point sources of dissolved organic matter (DOM) in streams influence its composition, interactions and fate in the aquatic ecosystem. These inputs can be very numerous at the scale of a watershed, and their identification remains a challenge, especially for diffuse sources related to land use. The complexity of the transfer mechanisms and the reactivity of DOM throughout the soil-water column continuum raise questions about the sampling of diffuse sources in watercourses. To answer this issue, we compared the characteristics of soil-extracted DOM influenced by a particular land use (homogenous sub-catchment of forest and vineyard) and DOM collected from the watercourse adjacent to the soil samples. A 28-day incubation experiment of soil extracts was designed to remove the labile fraction of DOM. During the first 3 days, between 40 and 70 % of the DOC mass was lost for both types of soils. A set of optical indicators (UV-Visible, EEM fluorescence and HPSEC/UV-fluorescence) showed that the labile fraction was mostly composed by low (<1 kDa) and high (>10 kDa) protein-like molecules. At the end of the incubation, soil-extracted DOM was mainly composed of medium molecules (1-10 kDa) associated to terrigenous humic-like compounds. Its optical and size molecular signature tended towards that in the adjacent watercourses and was specific to land use. However, the characteristics of DOM in watercourses was also influenced by the hydrological conditions, probably due to a transfer of top soil DOM during high water periods and both deep soil and autochthonous DOM during low water periods. These results were obtained by a set of indicators, including novel ones derived from HPSEC/UV-fluorescence. Finally, this study demonstrated that it is possible to sample the DOM representative of a land use directly in the river downstream of the homogeneous sub-basin by multiplying the samples during contrasting hydrological conditions.

3.
J Fluoresc ; 32(6): 2141-2149, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35948854

RESUMO

The present study, combining UV-Visible absorption and 3D fluorescence supported by PARAFAC chemometric analysis, focused on the characterization of soil water extractable organic matter (WEOM) in the zone of Doukkala located near the Atlantic coast of Morocco. The extracts, in water, of a set of 30 samples covering the four main types of agricultural soils in the region (commonly labeled Tirs, Faid, Hamri and R'mel) were investigated. [Formula: see text] and [Formula: see text] absorbance ratios [Formula: see text] and [Formula: see text] spectral slopes, along with their ratios[Formula: see text], as well as the fluorescence [Formula: see text] and humification [Formula: see text] indices were calculated and interpreted. In the four soil types, these parameters revealed, on the one hand, organic materials of terrigenous origin with some biological component, and showed, on the other hand, that these materials are in similar stages of humification with an important humic character. In all the soils investigated, 3D fluorescence crossed with PARAFAC chemometrics highlighted the absence of any protein component and revealed the prevalence of the fulvic acids fraction in the organic matter humic material.


Assuntos
Agricultura , Solo , Marrocos , Espectrometria de Fluorescência , Água
4.
Sci Total Environ ; 816: 151589, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-34774936

RESUMO

In France, soil-based constructed wetlands for the discharge of treated wastewater have become a popular technique to both reduce flow to surface receiving water bodies and perform complementary treatments. This study focuses on the fate of phosphorus in three different soils, as well as its assimilation by Phragmites australis. The experimental set-up consisted of three lysimeters containing three soils selected to be representative of those typically found near wastewater treatment plants (i.e. a silt loam Fluvisol, a sandy loam Fluvisol and a sandy-clay loam Technosol). Lysimeters are undisturbed soil monoliths (1.5 m3 in volume), whose masses are continuously monitored in order to obtain an accurate water mass balance. The lysimeters here were intermittently fed for 3.5 days and then left to rest for 3.5 days. The experiment lasted 26 months, including 18 months of feeding with phosphorus (PO4-P, TP) fluxes in and out being monitored along with water content, oxygen content and redox potential at various depths. The quantities of phosphorus stored in the soils and assimilated in the Phragmites australis were measured. Phosphorus fractionation in soils was performed to better understand its distribution and potential remobilization. Low phosphate concentrations were measured at the outlets of all three lysimeters, thereby highlighting satisfactory phosphorus retention in the three soils (removal efficiencies >90%). A significant amount of phosphorus can be exported by harvesting Phragmites australis aerial parts (26%, 17% and 13% of the yearly incoming phosphorus mass for the silt loam Fluvisol, sandy loam Fluvisol and sandy-clay loam Technosol, respectively). The fractionation step served to determine that the phosphorus retained in the soil was primarily bound to iron oxides/hydroxides, calcium and clay. Moreover, it was found to be preferable to hold oxidizing (aerobic) conditions and pH close to neutral in order to maintain conditions under which the complexes formed with phosphorus remain stable.


Assuntos
Fósforo , Solo , Argila , Águas Residuárias , Áreas Alagadas
5.
Front Microbiol ; 12: 643719, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025605

RESUMO

Since the early 1920s, the intensive use of antibiotics has led to the contamination of the aquatic environment through diffuse sources and wastewater effluents. The antibiotics commonly found in surface waters include sulfamethoxazole (SMX) and sulfamethazine (SMZ), which belong to the class of sulfonamides, the oldest antibiotic class still in use. These antibiotics have been detected in all European surface waters with median concentrations of around 50 ng L-1 and peak concentrations of up to 4-6 µg L-1. Sulfonamides are known to inhibit bacterial growth by altering microbial production of folic acid, but sub-lethal doses may trigger antimicrobial resistance, with unknown consequences for exposed microbial communities. We investigated the effects of two environmentally relevant concentrations (500 and 5,000 ng L-1) of SMZ and SMX on microbial activity and structure of periphytic biofilms in stream mesocosms for 28 days. Measurement of sulfonamides in the mesocosms revealed contamination levels of about half the nominal concentrations. Exposure to sulfonamides led to slight, transitory effects on heterotrophic functions, but persistent effects were observed on the bacterial structure. After 4 weeks of exposure, sulfonamides also altered the autotrophs in periphyton and particularly the diversity, viability and cell integrity of the diatom community. The higher concentration of SMX tested decreased both diversity (Shannon index) and evenness of the diatom community. Exposure to SMZ reduced diatom species richness and diversity. The mortality of diatoms in biofilms exposed to sulfonamides was twice that in non-exposed biofilms. SMZ also induced an increase in diatom teratologies from 1.1% in non-exposed biofilms up to 3% in biofilms exposed to SMZ. To our knowledge, this is the first report on the teratological effects of sulfonamides on diatoms within periphyton. The increase of both diatom growth rate and mortality suggests a high renewal of diatoms under sulfonamide exposure. In conclusion, our study shows that sulfonamides can alter microbial community structures and diversity at concentrations currently present in the environment, with unknown consequences for the ecosystem. The experimental set-up presented here emphasizes the interest of using natural communities to increase the ecological realism of ecotoxicological studies and to detect potential toxic effects on non-target species.

6.
J Environ Manage ; 292: 112775, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34023788

RESUMO

Fluvial suspended particulate matter (SPM) fluxes transport large amounts of contaminants that can affect water quality and river ecosystems. To better manage these inputs in river systems, it is essential to identify SPM and sediment sources. Many studies have applied a fingerprinting method based on using metals integrated into a numerical mixing model to estimate source contributions in a watershed. Most fingerprinting studies use contemporary SPM to trace historical inputs, whereas their metal concentrations were modified over time due to anthropogenic inputs. Moreover, total concentrations of these properties are subject to change due to diagenetic processes occurring in stored sediments. The aim of this study was to assess the relevance of using the non-reactive fraction of metals (i.e. metals and metalloids) in fingerprinting studies to estimate the historical contributions of SPM tributary inputs in a sediment core. To assess metal concentrations in the 'conservative' (i.e. non-reactive) fraction, SPM (samples of sources) and sediment core layers (targeted sediments) were subjected to total mineralization and soft extraction, and the non-reactive fraction was obtained by calculating the difference between the two extractions. This approach was applied on a sediment core from the Upper Rhône River (France), using geochemical signature in contemporary SPM of three major tributaries. We showed that the non-reactive fraction retains a higher number of metals in the range test for the deepest layers, which are characterized by significant anthropogenic inputs. Through apportionment modelling using Monte Carlo simulation, we demonstrated that the tributary contributions computed using the non-reactive fraction are more consistent with historical flood and water flow data and have lower uncertainties than with the total fraction. Working with the non-reactive fraction made it possible to decipher historical inputs of SPM using contemporary SPM samples. This approach enables robust identification of sub-catchment areas liable to provide large quantities of SPM. The non-reactive fraction can be used in a variety of environmental conditions and at various spatial and temporal scales to provide a robust quantification of sediment sources.


Assuntos
Sedimentos Geológicos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , França , Rios , Poluentes Químicos da Água/análise
7.
J Hazard Mater ; 411: 125121, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-33858096

RESUMO

Pharmaceutical industry effluents are complex and highly variable in time. Assessing the efficiency of a pharmaceutical industry wastewater treatment plant (WWTP) and the resulting decrease in effluent toxicity and ecological risk is thus not straightforward. We set up an original in situ pilot directly connected to a pharmaceutical WWTP to monitor the chronic toxicity of successive effluents using natural periphytic biofilms. Their structural and functional responses to effluent exposure were assessed by combining (i) a molecular approach to characterize the bacterial and diatom diversity and (ii) functional measurements of photosynthetic and enzyme activities. Effluent contamination by pharmaceuticals strongly decreased after the quaternary treatment (activated carbon). Most of the structural biological characteristics improved with cumulative WWTP treatment (bacterial diversity, microbial genetic structure, and biological diatom index), showing community recovery along the treatment process. However, functional parameters did not show clear links with treatment steps, suggesting that microbial activities were not solely driven by pharmaceuticals produced during the experimental period. Operationally, this type of pilot system offers a useful tool for biomonitoring approaches and offers new approaches for industrial managers to assess the ecological risk of production effluents in receiving water.


Assuntos
Plantas Medicinais , Poluentes Químicos da Água , Purificação da Água , Biofilmes , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
8.
Water Res ; 185: 116067, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33086458

RESUMO

Land-based micropollutants are the largest pollution source of the marine environment acting as the major large-scale chemical sink. Despite this, there are few comprehensive datasets for estimating micropollutant fluxes released to the sea from river mouths. Hence, their dynamics and drivers remain poorly understood. Here, we address this issue by continuous measurements throughout the Rhône River basin (∼100,000 km2) of 1) particulate micropollutant concentrations (persistant organic micropollutants: polychlorobiphenyls [PCBi] and polycyclic aromatic hydrocarbons [PAHs]; emerging compounds: glyphosate and aminomethylphosphonic acid [AMPA]; and trace metal elements [TME]), 2) suspended particulate matter [SPM], and 3) water discharge. From these data, we computed daily fluxes for a wide range of micropollutants (n = 29) over a long-term period (2008-2018). We argue that almost two-thirds of annual micropollutant fluxes are released to the Mediterranean Sea during three short-term periods over the year. The watershed hydro-climatic heterogeneity determines this dynamic by triggering seasonal floods. Unexpectedly, the large deficit of the inter-annual monthly micropollutant fluxes inputs (tributaries and the Upper Rhône River) compared to the output (Beaucaire station) claims for the presence of highly contaminated missing sources of micropollutants in the Rhône River watershed. Based on a SPM-flux-averaged micropollutant concentrations mass balance of the system and the estimates of the relative uncertainty of the missing sources concentration, we assessed their location within the Rhône River catchment. We assume that the potential missing sources of PAHs, PCBi and TME would be, respectively, the metropolitan areas, the alluvial margins of the Rhône River valley, and the unmonitored Cevenol tributaries.


Assuntos
Rios , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Mar Mediterrâneo , Poluentes Químicos da Água/análise
9.
Front Microbiol ; 9: 2437, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386312

RESUMO

Global contamination of streams by a large variety of compounds, such as nutrients and pesticides, may exert a high pressure on aquatic organisms, including microbial communities and their activity of organic matter decomposition. In this study, we assessed the potential interaction between nutrients and a fungicide and herbicide [tebuconazole (TBZ) and S-metolachlor (S-Met), respectively] at realistic environmental concentrations on the structure (biomass, diversity) and decomposition activity of fungal and bacterial communities (leaf decay rates, extracellular enzymatic activities) associated with Alnus glutinosa (Alnus) leaves. A 40-day microcosm experiment was used to combine two nutrient conditions (mesotrophic and eutrophic) with four pesticide treatments at a nominal concentrations of 15 µg L-1 (control, TBZ and S-Met, alone or mixed) following a 2 × 4 full factorial design. We also investigated resulting indirect effects on Gammarus fossarum feeding rates using leaves previously exposed to each of the treatments described above. Results showed interactive effects between nutrients and pesticides, only when nutrient (i.e., nitrogen and phosphorus) concentrations were the highest (eutrophic condition). Specifically, slight decreases in Alnus leaf decomposition rates were observed in channels exposed to TBZ (0.01119 days-1) and S-Met (0.01139 days-1) than in control ones (0.01334 days-1) that can partially be explained by changes in the structure of leaf-associated microbial communities. However, exposition to both TBZ and S-Met in mixture (MIX) led to comparable decay rates to those exposed to the pesticides alone (0.01048 days-1), suggesting no interaction between these two compounds on microbial decomposition. Moreover, stimulation in ligninolytic activities (laccase and phenol oxidase) was observed in presence of the fungicide, possibly highlighting detoxification mechanisms employed by microbes. Such stimulation was not observed for laccase activity exposed to the MIX, suggesting antagonistic interaction of these two compounds on the ability of microbial communities to cope with stress by xenobiotics. Besides, no effects of the treatments were observed on leaf palatability for macroinvertebrates. Overall, the present study highlights that complex interactions between nutrients and xenobiotics in streams and resulting from global change can negatively affect microbial communities associated with leaf litter, although effects on higher trophic-level organisms remains unclear.

10.
Water Sci Technol ; 77(5-6): 1706-1713, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29595173

RESUMO

Constructed wetlands receiving treated wastewater (CWtw) are placed between wastewater treatment plants and receiving water bodies, under the perception that they increase water quality. A better understanding of the CWtw functioning is required to evaluate their real performance. To achieve this, in situ continuous monitoring of nitrate and ammonium concentrations with ion-selective electrodes (ISEs) can provide valuable information. However, this measurement needs precautions to be taken to produce good data quality, especially in areas with high effluent quality requirements. In order to study the functioning of a CWtw instrumented with six ISE probes, we have developed an appropriate methodology for probe management and data processing. It is based on an evaluation of performance in the laboratory and an adapted field protocol for calibration, data treatment and validation. The result is an operating protocol concerning an acceptable cleaning frequency of 2 weeks, a complementary calibration using CWtw water, a drift evaluation and the determination of limits of quantification (1 mgN/L for ammonium and 0.5 mgN/L for nitrate). An example of a 9-month validated dataset confirms that it is fundamental to include the technical limitations of the measuring equipment and set appropriate maintenance and calibration methodologies in order to ensure an accurate interpretation of data.


Assuntos
Monitoramento Ambiental/métodos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Áreas Alagadas , Eletrodos Seletivos de Íons , Nitratos/análise , Nitrogênio/análise , Água , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Qualidade da Água
11.
Environ Technol ; 38(1): 53-64, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27255546

RESUMO

Over the last 10 years soil-based constructed wetlands for discharge of treated wastewater (TWW) are commonly presented as a valuable option to provide tertiary treatment. The uncomplete knowledge in soil modifications and a lack of clear design practices laid the foundation of this work. The aim of this study was to determine optimal hydraulic loads and to observe the main critical parameters affecting treating performances and hydraulic loads acceptance. For this purpose, a soil rich in clay and backfill was chosen to perform column infiltration tests with TWW. Two loading rates and two loading modes were compared to study the influence of an intermittent feeding. Inlet and outlet waters were periodically analysed and columns were instrumented with balances, tensiometers, O2 and temperature probes. Soil physico-chemical characteristics were also taken into account to better understand the modification of the soil. One of the main expectations of tertiary treatment is to improve phosphate removal. A particular attention was thus given to phosphorus retention. The interest of an intermittent feeding in presence of a soil with high clay content was showed. This study highlighted that an intermittent feeding could make possible the use of a clay-rich soil for water infiltration.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Áreas Alagadas , Silicatos de Alumínio/análise , Argila , Fósforo/análise , Solo/química , Águas Residuárias/análise , Poluentes Químicos da Água/análise
12.
Sci Total Environ ; 409(8): 1539-49, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21303715

RESUMO

This study reports on the relationship between copper (Cu) behavior and organic matter (OM) transformation along the turbidity gradient in the freshwater reaches of the Gironde Estuary. During a one-year survey, surface water and suspended particulate matter (SPM) were sampled at least monthly at three sites along the Garonne Branch, representing the main fluvial branch of the Gironde Estuary. Additionally, a longitudinal high resolution profile was sampled along the Garonne Branch, covering the turbidity gradient from the river water endmember to the maximum turbidity zone (MTZ). Seasonal variability and spatial distribution of Cu in both the dissolved phases (<0.2 µm, Cu(0.2) and <0.02 µm, Cu(0.02)) and particulate Cu (Cu(P)) clearly suggested Cu(0.2) addition during summer, that increased the Cu(0.2) concentrations by a factor ~2, mainly manifested by an increase in the Cu(0.02) fraction. At the annual timescale (2004), this internal Cu reactivity increased Cu(0.02) fluxes in the Garonne Branch by ~20% (3.6 t year(-1)), with the equivalent of ~2.9 t year(-1) derived from the Cu(P) fraction and ~0.7 t year(-1) from the colloidal (0.02-0.2 µm) fraction, without involving and/or affecting the Cu(C18) (hydrophobic metal-organic complexes) fraction. Combining data on Cu speciation with the results obtained by several independent techniques (DOC and POC measurements, 3D-fluorescence, and TEM) suggested close relationships between Cu behavior and OM transformation/restructuration along the turbidity gradient in the Garonne Branch. The observed Cu(0.02) addition was related to increasing humification (humification index HIX increased from 9 to 12, network formation) and labile OM degradation (Iγ/Iα ratio decreased from 0.70 to 0.44), going along with decreasing DOC and POC concentrations. Mass-balances suggest that in the studied system, degradation of OM may account for the release of ~25 µmol potentially bioaccessible Cu(0.02) per mole of particulate organic carbon mineralized.


Assuntos
Cobre/química , Água Doce/química , Poluentes Químicos da Água/química , Monitoramento Ambiental , França , Sedimentos Geológicos/química , Cinética , Tamanho da Partícula , Salinidade , Estações do Ano , Movimentos da Água
13.
Environ Sci Technol ; 43(19): 7237-44, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19848128

RESUMO

The diurnal evolution of the dynamic fraction, i.e., the potentially bioavailable fraction, of Cd, Cu, and Pb in a small river impacted by mining and smelting waste was studied in situ, under contrasting biofilm activity and hydrological conditions, using an automated voltammetric analyzer. The in situ, near real-time measurements revealed persistent dynamic metal species diurnal cycles. These cycles were affected mainly by the biochemical conditions rather than hydrological conditions. The data obtained from the in situ measurements, coupled with complementary laboratory analyses, revealed that various processes control the diurnal dynamic metal species cycles in the studied site; the trends of the diurnal cycles of the dynamic metal species can be different from those observed for the dissolved metal species measured in filtered samples. Moreover, the dynamic fraction of a given cationic metal can show diurnal cycles with opposite trends depending on the environmental conditions. All these findings highlight the interest and importance of automated, continuous measurements of specific relevant environmental metal fractions, compared to punctual weekly or monthly traditional sampling strategies of total dissolved metal analysis, to allow more appropriate water quality control and reliable assessment of metal ecotoxicological impact.


Assuntos
Biofilmes , Luz , Metais/química , Metais/metabolismo , Rios/química , Cádmio/química , Cádmio/metabolismo , Ritmo Circadiano , Cobre/química , Cobre/metabolismo , Monitoramento Ambiental , Chumbo/química , Chumbo/metabolismo , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
14.
J Environ Monit ; 11(5): 962-76, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19436854

RESUMO

The Riou Mort River watershed (SW France), representative of a heavily polluted, small, heterogeneous watershed, represents a major source for the polymetallic pollution of the Lot-Garonne-Gironde fluvial-estuarine system due to former mining and ore-treatment activities. In order to assess spatial distribution of the metal/metalloid contamination in the watershed, a high resolution hydrological and geochemical monitoring were performed during one year at four permanent observation stations. Additionally, thirty-five stream sediment samples were collected at representative key sites and analyzed for metal/metalloid (Cd, Zn, Cu, Pb, As, Sb, Mo, V, Cr, Co, Ni, Th, U and Hg) concentrations. The particulate concentrations in water and stream sediments show high spatial differences for most of the studied elements suggesting strong anthropogenic and/or lithogenic influences; for stream sediments, the sequence of the highest variability, ranging from 100% to 300%, is the following: Mo < Cu < Hg < As < Sb < Cd < Zn < Pb. Multidimensional statistical analyses combined with metal/metalloid maps generated by GIS tool were used to establish relationships between elements, to identify metal/metalloid sources and localize geochemical anomalies attributed to local geochemical background, urban and industrial activities. Finally, this study presents an approach to assess anthropogenic trace metal inputs within this watershed by combining lithology-dependent geochemical background values, metal/metalloid concentrations in stream sediments and mass balances of element fluxes at four key sites. The strongest anthropogenic contributions to particulate element fluxes are 90-95% for Cd, Zn and Hg in downstream sub-catchments. The localisation of anthropogenic metal/metalloid sources in restricted areas offers a great opportunity to further significantly reduce metal emissions and restore the Lot-Garonne-Gironde fluvial-estuarine ecosystem.


Assuntos
Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Metais/análise , Mineração , Poluentes Químicos da Água/análise , França , Sedimentos Geológicos/química
15.
Sci Total Environ ; 373(1): 196-207, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17169409

RESUMO

Daily measurements of water discharges and suspended particulate matter (SPM) concentrations and monthly analyses for arsenic were conducted from 1999 to 2005 on the Garonne, Dordogne and Isle Rivers, the three main tributaries of the Gironde Estuary, France. Despite the known historical polymetallic pollution affecting the Lot-Garonne River system, the highest As concentration level was observed in the Isle River. This was explained by the geological context and various Au/As deposits in this watershed. In the three studied rivers, dissolved As concentrations showed important seasonal variations with maximum values in summer. The dissolved As concentrations were closely related to water temperature and their increase in spring/summer appeared to be induced by water temperatures above approximately 15 degrees C, independently from discharge. The reduction of As(V) to more soluble As(III) and/or destruction of solid As carrier phases by micro-organisms could explain this observation, suggesting that temperature-dependent biogeochemical processes play an important role in controlling As partition and speciation in fluvial systems. Water and SPM fluxes in the Garonne River mainly control arsenic inputs into the Gironde Estuary and the downstream coastal zones. Based on the present data, we propose an empirical model to roughly estimate the annual dissolved and particulate As fluxes in the Garonne, Dordogne and Isle Rivers from annual water and SPM fluxes. The comparison of observed As fluxes and those estimated from the empirical model suggests that resuspension of historical, polluted reservoir sediments during a major flood accounted for approximately 50% of the annual As fluxes in 2003.


Assuntos
Arsênio/análise , Rios/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental , França , Estações do Ano
16.
Sci Total Environ ; 370(1): 133-46, 2006 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16879859

RESUMO

Daily measurements of water discharges and suspended particulate matter (SPM) concentrations and monthly sampling for trace element analyses (Cd, Zn, Pb and Cu) were conducted from 1999 to 2002 on the Garonne, Dordogne and Isle Rivers, the three main tributaries of the Gironde Estuary, France. Dissolved and particulate Cd, Zn, Pb and Cu concentrations in the Isle River were generally higher than those in the Garonne River, despite the known historical polymetallic pollution affecting the Lot-Garonne River system. Even if the relatively high dissolved metal concentrations in the Isle River may be of importance for the local ecosystem, metal inputs into the estuarine and coastal zones are mainly controlled by fluvial transport via the Garonne River. Characteristic element concentration ratios (e.g., Zn/Pb) in SPM and stream sediments from the Dordogne and Isle Rivers suggest two different metal source areas with distinct geochemical signals. Low Zn/Pb ratios (<8) and low Cu/Pb ratios (<0.8) have been attributed to upstream source zones in the Massif Central, featuring various ore deposits and mining areas. High Zn/Pb ratios were assigned to downstream sources (e.g., vineyards), partly explaining high Zn and Cu concentrations and high Cu/Pb ratios (>0.8) in SPM. Although SPM derived from the upstream parts of the studied watersheds may greatly contribute to the observed fluvial metal transport (up to approximately 80% for Pb), the results suggest that intensive agriculture also considerably influences gross metal (e.g., Zn, Cu) fluxes into the Gironde Estuary. Relative contributions of upstream and downstream source zones may vary from one year to another reflecting hydrological variations and/or reservoir management. Monitoring fluxes and identifying distinct geochemical signals from source areas in heterogeneous watersheds may greatly improve understanding of contaminant transport to the coast.


Assuntos
Sedimentos Geológicos/química , Metais Pesados/análise , Rios/química , Movimentos da Água , Poluentes Químicos da Água/análise , Ecossistema , França , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA